\(\frac{25(\sqrt{3}+\sqrt{15})}{2}\)
\(25(\sqrt5+\sqrt{15})\)
\(\frac{25(\sqrt5+\sqrt{15})}{2}\)
\(25(\sqrt3+\sqrt{15})\)

Applying the Cosine Rule in triangle ACD:
Using the cosine rule:
\( AC^2 = AD^2 + CD^2 - 2 \cdot AD \cdot CD \cdot \cos(∠ADC) \)
Given: \( AD = 10 \), \( CD = X \), \( ∠ADC = 30^\circ \), and \( AC = 20 \)
Substituting into the formula:
\( 100 + X^2 - 2 \cdot 10 \cdot X \cdot \cos(30^\circ) = 400 \)
Since \( \cos(30^\circ) = \frac{\sqrt{3}}{2} \), we get:
\( X^2 - 10X\sqrt{3} - 300 = 0 \)
Solving the quadratic equation:
\( X = \frac{10\sqrt{3} \pm 10\sqrt{15}}{2} \)
Since \( X \) is the length of a side, it must be positive:
\( \Rightarrow X = \frac{10\sqrt{3} + 10\sqrt{15}}{2} \)
Finding the area of the parallelogram:
Area = base × height = \( 10 \cdot X \cdot \sin(30^\circ) \)
Since \( \sin(30^\circ) = \frac{1}{2} \), we get:
Area = \( 10 \cdot \frac{10\sqrt{3} + 10\sqrt{15}}{2} \cdot \frac{1}{2} \)
\( = \frac{10 \cdot (10\sqrt{3} + 10\sqrt{15})}{4} \)
\( = 25(\sqrt{3} + \sqrt{15}) \)
Final Answer: \( \boxed{25(\sqrt{3} + \sqrt{15})} \) square units
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?
