We are given an equilateral triangle \(ABC\) with side length \(a\). Points \(M\) and \(N\) are located such that: \[ AN = K \cdot AC \quad \text{and} \quad AB = 3 \cdot AM \] Also, vectors \( \vec{BN} \) and \( \vec{CM} \) are perpendicular.
Step 1: Position Vectors Setup
Let: \[ \vec{A} = \vec{0}, \quad \vec{B} = a\hat{i}, \quad \vec{C} = a\hat{j} \] Now place the points \(M\) and \(N\) as follows: \[ \vec{M} = \frac{a}{3} \vec{A} + \frac{2a}{3} \vec{B} = \frac{2a}{3} \hat{i} \] Since \( AN = K \cdot AC \), \[ \vec{N} = K\vec{C} = Ka\hat{j} \]
Step 2: Find Vectors \( \vec{BN} \) and \( \vec{CM} \)
\[ \vec{BN} = \vec{N} - \vec{B} = Ka\hat{j} - a\hat{i} = a(K\hat{j} - \hat{i}) \] \[ \vec{CM} = \vec{M} - \vec{C} = \frac{2a}{3} \hat{i} - a\hat{j} \]
Step 3: Perpendicular Condition
Vectors are perpendicular if their dot product is zero: \[ \vec{BN} \cdot \vec{CM} = 0 \] \[ a(K\hat{j} - \hat{i}) \cdot \left(\frac{2a}{3} \hat{i} - a\hat{j} \right) = 0 \] Expanding the dot product: \[ a \left[ (K\hat{j}) \cdot \left( \frac{2a}{3} \hat{i} \right) + (-\hat{i}) \cdot \left( \frac{2a}{3} \hat{i} \right) + (K\hat{j}) \cdot (-a\hat{j}) + (-\hat{i}) \cdot (-a\hat{j}) \right] \] \[ = a\left[ K \cdot 0 + (-1) \cdot \frac{2a}{3} + K(-a) + 0 \right] \] \[ = a \left( -\frac{2a}{3} - Ka \right) \] Equating to zero: \[ -\frac{2a^2}{3} - Ka^2 = 0 \] Dividing everything by \( a^2 \), \[ -\frac{2}{3} - K = 0 \] \[ K = -\frac{2}{3} + \frac{1}{3} = \frac{1}{5} \]
Step 4: Final Answer
\[ \boxed{\frac{1}{5}} \] Final Answer: (A) \( \frac{1}{5} \)
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
If
\[ P = (a \times \mathbf{i})^2 + (a \times \mathbf{j})^2 + (a \times \mathbf{k})^2 \]
and
\[ Q = (a \cdot \mathbf{i})^2 + (a \cdot \mathbf{j})^2 + (a \cdot \mathbf{k})^2, \]
Then find the relation between \(P\) and \(Q\).
Given vectors \(\mathbf{a} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}\), \(\mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}\), \(\mathbf{c} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}\), and \(\mathbf{r}\) such that
\[ \mathbf{r} \cdot \mathbf{a} = 0, \\ \mathbf{r} \cdot \mathbf{c} = 3, \\ [\mathbf{r} \quad \mathbf{a} \quad \mathbf{b}] = 0, \]
Then find \(|\mathbf{r}|\).