\( a_3 \cdot a_5 = \frac{1}{9} \)
\( \Rightarrow ar^2 \cdot ar^4 = \frac{1}{9} \)
\( \Rightarrow (ar^3)^2 = \frac{1}{9} \)
\( \Rightarrow ar^3 = \frac{1}{3} \) ...(i)
\( a_6 + a_8 = 2 \)
\( \Rightarrow ar^5 + ar^7 = 2 \)
\( \Rightarrow ar^3 (r^2 + r^4) = 2 \)
\( \Rightarrow \frac{1}{3} r^2 (1 + r^2) = 2 \)
\( \Rightarrow r^2 (1 + r^2) = 2 \times 3 \)
\( \Rightarrow r^2 = 2 \Rightarrow r = \sqrt{2} \)
\( a = \frac{1}{3} \times \frac{1}{r^3} \)
\( = \frac{1}{3} \times \frac{1}{2\sqrt{2}} = \frac{1}{6\sqrt{2}} \)
\( 6(a_2 + a_4)(a_4 + a_6) \)
\( \Rightarrow 6(ar + ar^3)(ar^3 + ar^5) \)
\( \Rightarrow 6 \left( \frac{ar^3}{r^2} + \frac{1}{3} \right) \left( \frac{1}{3} + \frac{1}{3} r^2 \right) = 3 \)
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is: