Question:

Let a1, a2, a3, …. be a G.P. of increasing positive numbers. Let the sum of its 6th and 8th terms be 2 and the product of its 3rd and 5th terms be \(\frac{1}{9}\) .Then 6 (a2 + a4) (a4 + a6) is equal to

Updated On: Mar 21, 2025
  • 2
  • \(2\sqrt2\)
  • \(3\sqrt3\)
  • 3
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

\( a_3 \cdot a_5 = \frac{1}{9} \)

\( \Rightarrow ar^2 \cdot ar^4 = \frac{1}{9} \)

\( \Rightarrow (ar^3)^2 = \frac{1}{9} \)

\( \Rightarrow ar^3 = \frac{1}{3} \)    ...(i)

\( a_6 + a_8 = 2 \)

\( \Rightarrow ar^5 + ar^7 = 2 \)

\( \Rightarrow ar^3 (r^2 + r^4) = 2 \)

\( \Rightarrow \frac{1}{3} r^2 (1 + r^2) = 2 \)

\( \Rightarrow r^2 (1 + r^2) = 2 \times 3 \)

\( \Rightarrow r^2 = 2 \Rightarrow r = \sqrt{2} \)

\( a = \frac{1}{3} \times \frac{1}{r^3} \)

\( = \frac{1}{3} \times \frac{1}{2\sqrt{2}} = \frac{1}{6\sqrt{2}} \)

\( 6(a_2 + a_4)(a_4 + a_6) \)

\( \Rightarrow 6(ar + ar^3)(ar^3 + ar^5) \)

\( \Rightarrow 6 \left( \frac{ar^3}{r^2} + \frac{1}{3} \right) \left( \frac{1}{3} + \frac{1}{3} r^2 \right) = 3 \)

Was this answer helpful?
0
1