Express \(\vec{C}\) as a Unit Vector:
Let \(\vec{C} = C_1\vec{i} + C_2\vec{j} + C_3\vec{k}\) such that:
\[ C_1^2 + C_2^2 + C_3^2 = 1. \]
Using the Angle Condition with \(2\vec{i} + 2\vec{j} - \vec{k}\):
The dot product \(\vec{C} \cdot (2\vec{i} + 2\vec{j} - \vec{k})\) is given by:
\[ \vec{C} \cdot (2\vec{i} + 2\vec{j} - \vec{k}) = |\vec{C}||2\vec{i} + 2\vec{j} - \vec{k}|\cos 60^\circ. \]
Since \(\vec{C}\) is a unit vector: \[ 2C_1 + 2C_2 - C_3 = \frac{3}{2}. \]
Using the Angle Condition with \(\vec{i} - \vec{k}\):
The dot product \(\vec{C} \cdot (\vec{i} - \vec{k})\) is given by:
\[ \vec{C} \cdot (\vec{i} - \vec{k}) = |\vec{C}||\vec{i} - \vec{k}|\cos 45^\circ. \]
Simplifying gives: \[ C_1 - C_3 = 1. \]
Solving the Equations:
From \(C_1 - C_3 = 1\) and \(2C_1 + 2C_2 - C_3 = \frac{3}{2}\), we find: \[ C_1 = \frac{\sqrt{2}}{3}, \quad C_2 = -\frac{1}{3\sqrt{2}}, \quad C_3 = \frac{\sqrt{2}}{3} - \frac{1}{2}. \]
Vector Addition:
Adding \(\vec{C}\) to \(\left(\frac{1}{2}\vec{i} + \frac{1}{3\sqrt{2}}\vec{j} - \frac{\sqrt{2}}{3}\vec{k}\right)\):
\[ \vec{C} + \left(\frac{1}{2}\vec{i} + \frac{1}{3\sqrt{2}}\vec{j} - \frac{\sqrt{2}}{3}\vec{k}\right) = \frac{\sqrt{2}}{3}\vec{i} - \frac{1}{2}\vec{k}. \]
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below: