Question:

Let a smooth curve $y=f(x)$ be such that the slope of the tangent at any point $(x, y)$ on it is directly proportional to $\left(\frac{-y}{x}\right)$ If the curve passes through the point $(1,2)$ and $(8,1)$, then $\left|y\left(\frac{1}{8}\right)\right|$ is equal to

Updated On: Sep 30, 2024
  • $2 \log _{ e } 2$
  • 4
  • 1
  • $4 \log _{ e } 2$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation






For
For
curve is
At
Was this answer helpful?
1
0

Concepts Used:

Differential Equations

A differential equation is an equation that contains one or more functions with its derivatives. The derivatives of the function define the rate of change of a function at a point. It is mainly used in fields such as physics, engineering, biology and so on.

Orders of a Differential Equation

First Order Differential Equation

The first-order differential equation has a degree equal to 1. All the linear equations in the form of derivatives are in the first order. It has only the first derivative such as dy/dx, where x and y are the two variables and is represented as: dy/dx = f(x, y) = y’

Second-Order Differential Equation

The equation which includes second-order derivative is the second-order differential equation. It is represented as; d/dx(dy/dx) = d2y/dx2 = f”(x) = y”.

Types of Differential Equations

Differential equations can be divided into several types namely

  • Ordinary Differential Equations
  • Partial Differential Equations
  • Linear Differential Equations
  • Nonlinear differential equations
  • Homogeneous Differential Equations
  • Nonhomogeneous Differential Equations