For a Poisson distribution, the probability mass function is given by:
\[
P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}
\]
We are given that \( P(X = 0) = 2P(X = 1) \). Using the formula for \( P(X = 0) \) and \( P(X = 1) \), we get:
\[
P(X = 0) = \frac{\lambda^0 e^{-\lambda}}{0!} = e^{-\lambda}, P(X = 1) = \frac{\lambda^1 e^{-\lambda}}{1!} = \lambda e^{-\lambda}.
\]
The relationship \( P(X = 0) = 2P(X = 1) \) gives:
\[
e^{-\lambda} = 2\lambda e^{-\lambda}.
\]
Canceling \( e^{-\lambda} \) from both sides:
\[
1 = 2\lambda ⇒ \lambda = \frac{1}{2}.
\]
Now, we can calculate \( P(X = 3) \) using the Poisson formula:
\[
P(X = 3) = \frac{\left( \frac{1}{2} \right)^3 e^{-\frac{1}{2}}}{3!} = \frac{\frac{1}{8} e^{-\frac{1}{2}}}{6} = \frac{1}{48} e^{-\frac{1}{2}} = \frac{4}{3e^2}.
\]