Question:

Let \(\left\{a_n\right\}^{\infin}_{n=1}\) be a sequence of real numbers.
Then, which of the following statements is/are always TRUE ?

Updated On: Aug 13, 2024
  • If \(\sum\limits_{n=1}^{\infin}a_n\)converges absolutely, then \(\sum\limits_{n=1}^{\infin}a_n^2\) converges absolutely
  • If \(\sum\limits_{n=1}^{\infin}a_n\)converges absolutely, then \(\sum\limits_{n=1}^{\infin}a_n^3\) converges absolutely
  • If \(\sum\limits_{n=1}^{\infin}a_n\) converges, then \(\sum\limits_{n=1}^{\infin}a^2_n\) converges
  • If \(\sum\limits_{n=1}^{\infin}a_n\) converges, then \(\sum\limits_{n=1}^{\infin}a^3_n\) converges
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, B

Solution and Explanation

The correct option is (A) : If \(\sum\limits_{n=1}^{\infin}a_n\)converges absolutely, then \(\sum\limits_{n=1}^{\infin}a_n^2\) converges absolutely and (B) : If \(\sum\limits_{n=1}^{\infin}a_n\)converges absolutely, then \(\sum\limits_{n=1}^{\infin}a_n^3\) converges absolutely
Was this answer helpful?
0
0