Let A=\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\),show that(aI+bA)n=anI+nan-1bA,where I is the identity matrix of order 2 and n∈N
It is given that A= \(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\)
To show: (aI+bA)n=anI+nan-1bA
We shall prove the result by using the principle of mathematical induction.
For n = 1, we have:
P(1):(aI+bA)=aI+ba0A=aI+bA
Therefore, the result is true for n =1.
Let the result be true for n = k.
That is,
P(k):(aI+bA)k=akI+kak-1bA
Now, we prove that the result is true for n = k + 1.
Consider:
(aI+bA)k+1=(aI+bA)k(aI+bA)
=(akI+kak-1bA)(aI+bA)
=ak+1+kakbAI+akbIA+kak-1b2A2
=ak+1I+(k+1)akbA+kak-1b2A2 ...(1)
Now A2=\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\)\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\)= \(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\) = O
From (1), we have:
(aI+bA)k+1=ak+1I+(k+1)akbA+O
=ak+1I+(k+1)akbA
Therefore, the result is true for n = k + 1.
Thus, by the principle of mathematical induction, we have:
(aI+bA)n=anI+nan-1bA where A=\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\),n∈N
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: