Question:

Let A=\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\),show that(aI+bA)n=anI+nan-1bA,where I is the identity matrix of order 2 and n∈N

Updated On: Dec 16, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

It is given that A= \(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\) 

To show: (aI+bA)n=anI+nan-1bA 
We shall prove the result by using the principle of mathematical induction. 

For n = 1, we have: 
P(1):(aI+bA)=aI+ba0A=aI+bA 

Therefore, the result is true for n =1. 
Let the result be true for n = k. 
That is,
P(k):(aI+bA)k=akI+kak-1bA 
Now, we prove that the result is true for n = k + 1. 
Consider:
(aI+bA)k+1=(aI+bA)k(aI+bA) 
=(akI+kak-1bA)(aI+bA) 
=ak+1+kakbAI+akbIA+kak-1b2A2 
=ak+1I+(k+1)akbA+kak-1b2A2 ...(1) 

Now A2=\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\)\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\)\(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\) = O 

From (1), we have: 
(aI+bA)k+1=ak+1I+(k+1)akbA+O 
=ak+1I+(k+1)akbA 

Therefore, the result is true for n = k + 1. 

Thus, by the principle of mathematical induction, we have: 

(aI+bA)n=anI+nan-1bA where A=\(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\),n∈N

Was this answer helpful?
3
0