1. Matrix Inverse and Adjoint: - The inverse of \( A \) is given by: \[ A^{-1} = \frac{1}{\det A} \cdot \text{adj } A = \text{adj } A, \] since \( \det A = ad - 0 = 1 \).
2. Simplify the Given Expression: - Substituting \( A^{-1} = \text{adj } A \): \[ A^{-1} + (\text{adj } A)^{-1} = \text{adj } A + (\text{adj } A)^{-1}. \] - Since \( (\text{adj } A)^{-1} = A \) (property of adjugate matrices), we get: \[ A^{-1} + (\text{adj } A)^{-1} = \text{adj } A + A. \] 3. Calculate \((\alpha, \beta, \gamma, \delta)\): - Adding \( A \) and \( \text{adj } A \): \[ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} + \begin{pmatrix} d & 0 \\ -c & a \end{pmatrix} = \begin{pmatrix} a + d & 0 \\ 0 & a + d \end{pmatrix}. \] 4. Conclusion: - The resulting matrix is: \[ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} a + d & 0 \\ 0 & a + d \end{pmatrix}. \]
Match List-I with List-II
List-I (Matrix) | List-II (Inverse of the Matrix) |
---|---|
(A) \(\begin{bmatrix} 1 & 7 \\ 4 & -2 \end{bmatrix}\) | (I) \(\begin{bmatrix} \tfrac{2}{15} & \tfrac{1}{10} \\[6pt] -\tfrac{1}{15} & \tfrac{1}{5} \end{bmatrix}\) |
(B) \(\begin{bmatrix} 6 & -3 \\ 2 & 4 \end{bmatrix}\) | (II) \(\begin{bmatrix} \tfrac{1}{5} & -\tfrac{2}{15} \\[6pt] -\tfrac{1}{10} & \tfrac{7}{30} \end{bmatrix}\) |
(C) \(\begin{bmatrix} 5 & 2 \\ -5 & 4 \end{bmatrix}\) | (III) \(\begin{bmatrix} \tfrac{1}{15} & \tfrac{7}{30} \\[6pt] \tfrac{2}{15} & -\tfrac{1}{30} \end{bmatrix}\) |
(D) \(\begin{bmatrix} 7 & 4 \\ 3 & 6 \end{bmatrix}\) | (IV) \(\begin{bmatrix} \tfrac{2}{15} & -\tfrac{1}{15} \\[6pt] \tfrac{1}{6} & \tfrac{1}{6} \end{bmatrix}\) |