1. Matrix Inverse and Adjoint: - The inverse of \( A \) is given by: \[ A^{-1} = \frac{1}{\det A} \cdot \text{adj } A = \text{adj } A, \] since \( \det A = ad - 0 = 1 \).
2. Simplify the Given Expression: - Substituting \( A^{-1} = \text{adj } A \): \[ A^{-1} + (\text{adj } A)^{-1} = \text{adj } A + (\text{adj } A)^{-1}. \] - Since \( (\text{adj } A)^{-1} = A \) (property of adjugate matrices), we get: \[ A^{-1} + (\text{adj } A)^{-1} = \text{adj } A + A. \] 3. Calculate \((\alpha, \beta, \gamma, \delta)\): - Adding \( A \) and \( \text{adj } A \): \[ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} + \begin{pmatrix} d & 0 \\ -c & a \end{pmatrix} = \begin{pmatrix} a + d & 0 \\ 0 & a + d \end{pmatrix}. \] 4. Conclusion: - The resulting matrix is: \[ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} a + d & 0 \\ 0 & a + d \end{pmatrix}. \]
If \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular matrices of the same order, then the inverse of \[ A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B \] is equal to: