1. Matrix Inverse and Adjoint: - The inverse of \( A \) is given by: \[ A^{-1} = \frac{1}{\det A} \cdot \text{adj } A = \text{adj } A, \] since \( \det A = ad - 0 = 1 \).
2. Simplify the Given Expression: - Substituting \( A^{-1} = \text{adj } A \): \[ A^{-1} + (\text{adj } A)^{-1} = \text{adj } A + (\text{adj } A)^{-1}. \] - Since \( (\text{adj } A)^{-1} = A \) (property of adjugate matrices), we get: \[ A^{-1} + (\text{adj } A)^{-1} = \text{adj } A + A. \] 3. Calculate \((\alpha, \beta, \gamma, \delta)\): - Adding \( A \) and \( \text{adj } A \): \[ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} + \begin{pmatrix} d & 0 \\ -c & a \end{pmatrix} = \begin{pmatrix} a + d & 0 \\ 0 & a + d \end{pmatrix}. \] 4. Conclusion: - The resulting matrix is: \[ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} a + d & 0 \\ 0 & a + d \end{pmatrix}. \]
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to: