1. Matrix Inverse and Adjoint: - The inverse of \( A \) is given by: \[ A^{-1} = \frac{1}{\det A} \cdot \text{adj } A = \text{adj } A, \] since \( \det A = ad - 0 = 1 \).
2. Simplify the Given Expression: - Substituting \( A^{-1} = \text{adj } A \): \[ A^{-1} + (\text{adj } A)^{-1} = \text{adj } A + (\text{adj } A)^{-1}. \] - Since \( (\text{adj } A)^{-1} = A \) (property of adjugate matrices), we get: \[ A^{-1} + (\text{adj } A)^{-1} = \text{adj } A + A. \] 3. Calculate \((\alpha, \beta, \gamma, \delta)\): - Adding \( A \) and \( \text{adj } A \): \[ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} + \begin{pmatrix} d & 0 \\ -c & a \end{pmatrix} = \begin{pmatrix} a + d & 0 \\ 0 & a + d \end{pmatrix}. \] 4. Conclusion: - The resulting matrix is: \[ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} a + d & 0 \\ 0 & a + d \end{pmatrix}. \]
If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]