Step 1: Understand the structure of \(A.\)
Matrix \(A\) has eigenvalues \(1, 1, -1, -1.\)
It can be written in block diagonal form:
\[
A =
\begin{pmatrix}
I_2 & 0 \\
0 & -I_2
\end{pmatrix}.
\]
Step 2: Express \(X\) in block form.
Let
\[
X =
\begin{pmatrix}
B & C \\
D & E
\end{pmatrix},
\]
where \(B, C, D, E\) are \(2\times2\) real matrices.
Step 3: Compute \(T_A(X).\)
\[
T_A(X) = AX - XA =
\begin{pmatrix}
I_2 & 0 \\
0 & -I_2
\end{pmatrix}
\begin{pmatrix}
B & C \\
D & E
\end{pmatrix}
-
\begin{pmatrix}
B & C \\
D & E
\end{pmatrix}
\begin{pmatrix}
I_2 & 0 \\
0 & -I_2
\end{pmatrix}.
\]
This gives:
\[
T_A(X) =
\begin{pmatrix}
0 & 2C \\
-2D & 0
\end{pmatrix}.
\]
Step 4: Determine the range.
The image consists of all matrices of the above form,
where \(C, D\) are arbitrary \(2 \times 2\) matrices.
Thus:
\[
\dim(\text{Range } T_A) = \dim(C) + \dim(D) = 4 + 4 = 8.
\]
Step 5: Conclusion.
Hence, the dimension of the range of \(T_A\) is \(\boxed{8}.\)