Let \( A = \begin{bmatrix} n & 0 & 0 \\ 0 & n & 0 \\ 0 & 0 & n \end{bmatrix} \) and \( B = \begin{bmatrix} 0 & 0 & n \\ 0 & n & 0 \\ n & 0 & 0 \end{bmatrix} \). Then \( A^2 + B^2 + AB = \)
Show Hint
Matrix Operations}
Diagonal matrices (like A) are straightforward to square - just square each diagonal element
Permutation matrices (like B) cycle their entries when multiplied
The identity matrix \( I \) acts as 1 in matrix multiplication
Always verify matrix dimensions before multiplication