Step 1. Define Matrices:
\( A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \), \( B = [B_1, B_2, B_3] \)
where
\( B_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \), \( B_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} \), \( B_3 = \begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix} \).
Step 2. Equations from Matrix Multiplication:
- For \( AB_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \), we get:
\(\begin{cases} 2x_1 + z_1 = 1 \\ x_1 + y_1 = 0 \\ x_1 + z_1 = 0 \end{cases}\)
- For \( AB_2 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} \), we get:
\(\begin{cases} 2x_2 + z_2 = 2 \\ x_2 + y_2 = 3 \\ x_2 + z_2 = 0 \end{cases}\)
- For \( AB_3 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \), we get:
\(\begin{cases} 2x_3 + z_3 = 3 \\ x_3 + y_3 = 2 \\ x_3 + z_3 = 1 \end{cases}\)
Step 3. Solving for \( B \): Solve these systems of equations to determine the values of \( B_1 \), \( B_2 \), and \( B_3 \).
Step 4. Calculate \( \alpha \) and \( \beta \):
- \( \alpha = |B| = 3 - \beta \) is the sum of the diagonal elements of \( B \), which is 1.
Step 5. Find \( \alpha^3 + \beta^3 \):
\( \alpha^3 + \beta^3 = 27 + 1 = 28 \)
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)