Step 1. Define Matrices:
\( A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \), \( B = [B_1, B_2, B_3] \)
where
\( B_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \), \( B_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} \), \( B_3 = \begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix} \).
Step 2. Equations from Matrix Multiplication:
- For \( AB_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \), we get:
\(\begin{cases} 2x_1 + z_1 = 1 \\ x_1 + y_1 = 0 \\ x_1 + z_1 = 0 \end{cases}\)
- For \( AB_2 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} \), we get:
\(\begin{cases} 2x_2 + z_2 = 2 \\ x_2 + y_2 = 3 \\ x_2 + z_2 = 0 \end{cases}\)
- For \( AB_3 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \), we get:
\(\begin{cases} 2x_3 + z_3 = 3 \\ x_3 + y_3 = 2 \\ x_3 + z_3 = 1 \end{cases}\)
Step 3. Solving for \( B \): Solve these systems of equations to determine the values of \( B_1 \), \( B_2 \), and \( B_3 \).
Step 4. Calculate \( \alpha \) and \( \beta \):
- \( \alpha = |B| = 3 - \beta \) is the sum of the diagonal elements of \( B \), which is 1.
Step 5. Find \( \alpha^3 + \beta^3 \):
\( \alpha^3 + \beta^3 = 27 + 1 = 28 \)
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 