Step 1. Define Matrices:  
  \( A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \), \( B = [B_1, B_2, B_3] \)
  where  
  \( B_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \), \( B_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} \), \( B_3 = \begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix} \).
Step 2. Equations from Matrix Multiplication:  
  - For \( AB_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \), we get:  
    \(\begin{cases}        2x_1 + z_1 = 1 \\        x_1 + y_1 = 0 \\        x_1 + z_1 = 0      \end{cases}\)
  - For \( AB_2 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} \), we get:  
   \(\begin{cases}        2x_2 + z_2 = 2 \\        x_2 + y_2 = 3 \\        x_2 + z_2 = 0      \end{cases}\)
  - For \( AB_3 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \), we get:  
  \(\begin{cases}        2x_3 + z_3 = 3 \\        x_3 + y_3 = 2 \\        x_3 + z_3 = 1      \end{cases}\)
Step 3. Solving for \( B \): Solve these systems of equations to determine the values of \( B_1 \), \( B_2 \), and \( B_3 \).
Step 4. Calculate \( \alpha \) and \( \beta \):  
  - \( \alpha = |B| = 3 - \beta \) is the sum of the diagonal elements of \( B \), which is 1.
Step 5. Find \( \alpha^3 + \beta^3 \):  
  \( \alpha^3 + \beta^3 = 27 + 1 = 28 \)
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81. 
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Given below are two statements:
Statement (I):
 
 are isomeric compounds. 
Statement (II): 
 are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
