A matrix is singular if its determinant is zero.
We compute the determinant of \( A \):
\[
\text{det}(A) =
\begin{vmatrix}
0 & k & k \\
k & -4 & -6 \\
k & -3 & -5
\end{vmatrix}
\]
Expand along the first row:
\[
= 0 \cdot
\begin{vmatrix}
-4 & -6 \\
-3 & -5
\end{vmatrix}
- k \cdot
\begin{vmatrix}
k & -6 \\
k & -5
\end{vmatrix}
+ k \cdot
\begin{vmatrix}
k & -4 \\
k & -3
\end{vmatrix}
\]
Now compute the minors:
\[
\begin{vmatrix}
k & -6 \\
k & -5
\end{vmatrix}
= k(-5) - (-6)(k) = -5k + 6k = k
\]
\[
\begin{vmatrix}
k & -4 \\
k & -3
\end{vmatrix}
= k(-3) - (-4)(k) = -3k + 4k = k
\]
Substitute back:
\[
\text{det}(A) = -k(k) + k(k) = -k^2 + k^2 = 0
\]
So for all real values of \( k \), the determinant is zero.
Hence, \( A \) is singular for all real values of \( k \).
\[
\boxed{\text{All real values of } k}
\]