Let \( A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \). Note that:
\[
A^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I
\]
Since \( A^2 = I \), then powers of \( A \) cycle every 2 steps:
\[
A^3 = A^2 \cdot A = I \cdot A = A, \quad A^4 = A^2 \cdot A^2 = I \cdot I = I, \quad A^5 = A^4 \cdot A = I \cdot A = A
\]
\[
\therefore A^5 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]