To solve the problem, let's first analyze the given information about the matrix \( A \) and its actions on specific vectors:
Now, let's form the matrix equation for vector multiplication:
Using the information from above, the general form of \( A \) can be constructed since the eigenvectors associated with eigenvalues will contribute to columns:
Let \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \). Substituting the given vectors, we have:
From \( A \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \):
From \( A \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 4 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \):
From \( A \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \):
These equations ensure the structure of matrix \( A \) with specific row operations and eigenvectors confirmed.
The system provided is \((A - 3I) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \).
Since we know the eigenvalues are 2, 4, and from further analysis:
As for the provided options:
Thus, the system has a unique solution.
Define the matrix \( A \) with elements. Let
\[ A = \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix}. \]
Use the given conditions to form equations. Using the dot product notation for matrix multiplication, we have the following conditions:
From
\[ A \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} : \]
\[ (x_1 \ y_1 \ z_1) \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 2, \quad (x_2 \ y_2 \ z_2) \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 0, \quad (x_3 \ y_3 \ z_3) \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 1. \]
Expanding each dot product:
\[ x_1 + z_1 = 2, \quad x_2 + z_2 = 0, \quad x_3 + z_3 = 1. \quad (1) \]
From
\[ A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} : \]
\[ (x_1 \ y_1 \ z_1) \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 4, \quad (x_2 \ y_2 \ z_2) \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0, \quad (x_3 \ y_3 \ z_3) \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 1. \]
Expanding each dot product:
\[ x_1 + y_1 + z_1 = 4, \quad x_2 + y_2 + z_2 = 0, \quad x_3 + y_3 + z_3 = 1. \quad (2) \]
From
\[ A \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} : \]
\[ (x_1 \ y_1 \ z_1) \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 2, \quad (x_2 \ y_2 \ z_2) \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 1, \quad (x_3 \ y_3 \ z_3) \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 0. \]
Expanding each dot product:
\[ y_1 + z_1 = 2, \quad y_2 + z_2 = 1, \quad y_3 + z_3 = 0. \quad (3) \]
Solve for elements of \( A \). Using equations (1), (2), and (3), we can solve for the individual elements of \( A \):
From equation (2): \( x_1 + y_1 + z_1 = 4 \) and \( y_1 + z_1 = 2 \) from equation (3). Substitute \( z_1 = 2 - y_1 \) into equation (1) to find \( x_1, y_1, z_1 \).
Similarly, solve for \( x_2, y_2, z_2 \) and \( x_3, y_3, z_3 \) to complete the matrix \( A \).
Set up the system:
\[ (A - 3I) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}. \]
Now, calculate \( A - 3I \) and substitute to find the unique solution for the system.
Therefore, the answer is: unique solution.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
