The given quadratic equation in \( x \) is:
\[ (a^2 + b^2)x^2 - 2b(a + c)x + (b^2 + c^2) = 0. \]
This can be written in the form:
\[ (ax - b)^2 + (bx - c)^2 = 0. \]
Thus, we deduce that the discriminant must satisfy conditions related to triangle inequalities, leading us to intervals of \( x \) values.
By evaluating the possible values of \( x \), we find that the interval \((\alpha, \beta)\) corresponds to:
\[ \alpha = \frac{1 - \sqrt{5}}{2}, \quad \beta = \frac{1 + \sqrt{5}}{2}. \]
Then, calculate \(12(\alpha^2 + \beta^2)\):
\[ 12(\alpha^2 + \beta^2) = 36. \]
Thus, the answer is:
\[ 36. \]
If the roots of the quadratic equation \( ax^2 + bx + c = 0 \) are real and equal, then:
If the given figure shows the graph of polynomial \( y = ax^2 + bx + c \), then:
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)