Given:
\[ (a^2 + b^2)x^2 - 2b(a + c)x + b^2 + c^2 = 0 \]
\[ (ax - b)^2 + (bx - c)^2 = 0 \]
\[ x = \frac{b \pm \sqrt{b^2 - ac}}{a^2 + b^2} \]
Step 1:
Consider the triangle with sides \( a, b, c \): \[ |h - k| < c < (a + b) \]
Since \( b^2 = ac \), \[ |a - c| < b < a + c \] Substituting \( b^2 = ac \): \[ |1 - \xi| < \xi < 1 + \xi \]
Hence, \[ |1 - \xi| < \xi < 1 + \xi \] \[ |1 - x^2| < x < 1 + x^2 \]
Case 1: \( b < x < 1 + x^2 \)
This is always positive.
Case 2: \( |1 - x^2| < x \)
\[ -x < 1 - x^2 < x \]
Now:
\[ 1 - x^2 < x \] \[ x^2 + x - 1 > 0 \]
Solving: \[ x = \frac{-1 \pm \sqrt{5}}{2} \]
\[ -x < 1 - x^2 \] \[ x^2 - x - 1 < 0 \]
Hence, \[ x = \frac{1 \pm \sqrt{5}}{2} \]
Now:
\[ \alpha = \frac{-1 + \sqrt{5}}{2}, \quad \beta = \frac{-1 - \sqrt{5}}{2} \]
Step 2:
\[ 12(a^2 + b^2) = 12 \left[\left(\frac{-1 + \sqrt{5}}{2}\right)^2 + \left(\frac{-1 - \sqrt{5}}{2}\right)^2\right] \]
\[ = 12 \left(\frac{(1 + \sqrt{5})^2 + (1 - \sqrt{5})^2}{4}\right) \]
\[ = 12 \times \frac{12}{4} = 36 \]
∴ Final Answer:
\[ \boxed{36} \]
The given quadratic equation in \( x \) is:
\[ (a^2 + b^2)x^2 - 2b(a + c)x + (b^2 + c^2) = 0. \]
This can be written in the form:
\[ (ax - b)^2 + (bx - c)^2 = 0. \]
Thus, we deduce that the discriminant must satisfy conditions related to triangle inequalities, leading us to intervals of \( x \) values.
By evaluating the possible values of \( x \), we find that the interval \((\alpha, \beta)\) corresponds to:
\[ \alpha = \frac{1 - \sqrt{5}}{2}, \quad \beta = \frac{1 + \sqrt{5}}{2}. \]
Then, calculate \(12(\alpha^2 + \beta^2)\):
\[ 12(\alpha^2 + \beta^2) = 36. \]
Thus, the answer is:
\[ 36. \]
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to