Question:

Let a, b be positive real numbers such that \(a\lt b\). Given that
\(\lim\limits_{N\rightarrow\infin}\displaystyle\int^{N}_{0}e^{-t^2}dt=\frac{\sqrt \pi}{2},\) the value of
\(\lim\limits_{N\rightarrow\infin}\displaystyle\int^{N}_{0}\frac{1}{t^2}(e^{-at^2}-e^{-bt^2})dt\) is equal to

Updated On: Oct 1, 2024
  • √π(√a – √b).
  • √π(√a + √b).
  • -√π(√a + √b).
  • √π(√b – √a).
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The correct option is (D): √π(√b – √a)
Was this answer helpful?
0
0

Top Questions on Integral Calculus

View More Questions