We are given:
\[ m_{AB} = m_{AD} \]
\[ \implies \frac{2}{t_1 + t_2} = \frac{2a(t_1 - t_3)}{a t_1^2 - \alpha} \]
\[ \implies a t_1^2 - \alpha = a \{ t_1^2 - t_1 t_3 + t_1 t_2 - t_2 t_3 \} \]
\[ \implies \alpha = a ( t_1 t_3 + t_2 t_3 - t_1 t_2 ) \]
\[ AM = |2a ( t_1 - t_3 )|, \quad BN = |2a ( t_2 - t_3 )|, \]
\[ CD = |a t_3^2 - \alpha| \]
\[ CD = |a t_3^2 - a ( t_1 t_3 + t_2 t_3 - t_1 t_2 ) | \]
\[ = a | t_3 ( t_3 - t_1 ) - t_2 ( t_3 - t_1 ) | \]
\[ = a | ( t_3 - t_2 ) ( t_3 - t_1 ) | \]
\[ \left( \frac{AM \cdot BN}{CD} \right)^2 = \frac{ \{ 2a ( t_1 - t_3 ) \cdot 2a ( t_2 - t_3 ) \}^2 }{ a ( t_3 - t_2 ) ( t_3 - t_1 )} \]
\[ = \frac{16 a^2}{a} \cdot \frac{( t_1 - t_3 )^2 ( t_2 - t_3 )^2 }{ ( t_3 - t_2 ) ( t_3 - t_1 )} \]
\[ 16 a^2 = 16 \times \frac{9}{4} = 36 \]
Thus, the final answer is:
\[ \boxed{36} \]