\[ m_{AB} = m_{AD} \] \[ \Rightarrow \frac{2}{t_1 + t_2} = \frac{2a(t_1 - t_3)}{a t_1^2 - \alpha} \] \[ \Rightarrow a t_1^2 - \alpha = a \{ t_1^2 - t_1 t_3 + t_1 t_2 - t_2 t_3 \} \] \[ \Rightarrow \alpha = a (t_1 t_3 + t_2 t_3 - t_1 t_2) \] \[ AM = |2a (t_1 - t_3)|, \quad BN = |2a (t_2 - t_3)| \] \[ CD = |a t_3^2 - \alpha| \] \[ CD = |a t_3^2 - a (t_1 t_3 + t_2 t_3 - t_1 t_2)| \] \[ = a |t_3^2 - t_1 t_3 - t_2 t_3 + t_1 t_2| \] \[ = a |t_3 (t_3 - t_1 - t_2) + t_1 t_2| \] \[ CD = a |(t_3 - t_2)(t_3 - t_1)| \] \[ \left( \frac{AM \cdot BN}{CD} \right)^2 = \left\{ \frac{2a(t_1 - t_3) \cdot 2a(t_2 - t_3)}{a(t_3 - t_2)(t_3 - t_1)} \right\}^2 \] \[ 16a^2 = 16 \times \frac{9}{4} = 36 \]

We are given:
\[ m_{AB} = m_{AD} \]
\[ \implies \frac{2}{t_1 + t_2} = \frac{2a(t_1 - t_3)}{a t_1^2 - \alpha} \]
\[ \implies a t_1^2 - \alpha = a \{ t_1^2 - t_1 t_3 + t_1 t_2 - t_2 t_3 \} \]
\[ \implies \alpha = a ( t_1 t_3 + t_2 t_3 - t_1 t_2 ) \]
\[ AM = |2a ( t_1 - t_3 )|, \quad BN = |2a ( t_2 - t_3 )|, \]
\[ CD = |a t_3^2 - \alpha| \]
\[ CD = |a t_3^2 - a ( t_1 t_3 + t_2 t_3 - t_1 t_2 ) | \]
\[ = a | t_3 ( t_3 - t_1 ) - t_2 ( t_3 - t_1 ) | \]
\[ = a | ( t_3 - t_2 ) ( t_3 - t_1 ) | \]
\[ \left( \frac{AM \cdot BN}{CD} \right)^2 = \frac{ \{ 2a ( t_1 - t_3 ) \cdot 2a ( t_2 - t_3 ) \}^2 }{ a ( t_3 - t_2 ) ( t_3 - t_1 )} \]
\[ = \frac{16 a^2}{a} \cdot \frac{( t_1 - t_3 )^2 ( t_2 - t_3 )^2 }{ ( t_3 - t_2 ) ( t_3 - t_1 )} \]
\[ 16 a^2 = 16 \times \frac{9}{4} = 36 \]
Thus, the final answer is:
\[ \boxed{36} \]
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 