\[ m_{AB} = m_{AD} \] \[ \Rightarrow \frac{2}{t_1 + t_2} = \frac{2a(t_1 - t_3)}{a t_1^2 - \alpha} \] \[ \Rightarrow a t_1^2 - \alpha = a \{ t_1^2 - t_1 t_3 + t_1 t_2 - t_2 t_3 \} \] \[ \Rightarrow \alpha = a (t_1 t_3 + t_2 t_3 - t_1 t_2) \] \[ AM = |2a (t_1 - t_3)|, \quad BN = |2a (t_2 - t_3)| \] \[ CD = |a t_3^2 - \alpha| \] \[ CD = |a t_3^2 - a (t_1 t_3 + t_2 t_3 - t_1 t_2)| \] \[ = a |t_3^2 - t_1 t_3 - t_2 t_3 + t_1 t_2| \] \[ = a |t_3 (t_3 - t_1 - t_2) + t_1 t_2| \] \[ CD = a |(t_3 - t_2)(t_3 - t_1)| \] \[ \left( \frac{AM \cdot BN}{CD} \right)^2 = \left\{ \frac{2a(t_1 - t_3) \cdot 2a(t_2 - t_3)}{a(t_3 - t_2)(t_3 - t_1)} \right\}^2 \] \[ 16a^2 = 16 \times \frac{9}{4} = 36 \]

We are given:
\[ m_{AB} = m_{AD} \]
\[ \implies \frac{2}{t_1 + t_2} = \frac{2a(t_1 - t_3)}{a t_1^2 - \alpha} \]
\[ \implies a t_1^2 - \alpha = a \{ t_1^2 - t_1 t_3 + t_1 t_2 - t_2 t_3 \} \]
\[ \implies \alpha = a ( t_1 t_3 + t_2 t_3 - t_1 t_2 ) \]
\[ AM = |2a ( t_1 - t_3 )|, \quad BN = |2a ( t_2 - t_3 )|, \]
\[ CD = |a t_3^2 - \alpha| \]
\[ CD = |a t_3^2 - a ( t_1 t_3 + t_2 t_3 - t_1 t_2 ) | \]
\[ = a | t_3 ( t_3 - t_1 ) - t_2 ( t_3 - t_1 ) | \]
\[ = a | ( t_3 - t_2 ) ( t_3 - t_1 ) | \]
\[ \left( \frac{AM \cdot BN}{CD} \right)^2 = \frac{ \{ 2a ( t_1 - t_3 ) \cdot 2a ( t_2 - t_3 ) \}^2 }{ a ( t_3 - t_2 ) ( t_3 - t_1 )} \]
\[ = \frac{16 a^2}{a} \cdot \frac{( t_1 - t_3 )^2 ( t_2 - t_3 )^2 }{ ( t_3 - t_2 ) ( t_3 - t_1 )} \]
\[ 16 a^2 = 16 \times \frac{9}{4} = 36 \]
Thus, the final answer is:
\[ \boxed{36} \]
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 