\[ m_{AB} = m_{AD} \] \[ \Rightarrow \frac{2}{t_1 + t_2} = \frac{2a(t_1 - t_3)}{a t_1^2 - \alpha} \] \[ \Rightarrow a t_1^2 - \alpha = a \{ t_1^2 - t_1 t_3 + t_1 t_2 - t_2 t_3 \} \] \[ \Rightarrow \alpha = a (t_1 t_3 + t_2 t_3 - t_1 t_2) \] \[ AM = |2a (t_1 - t_3)|, \quad BN = |2a (t_2 - t_3)| \] \[ CD = |a t_3^2 - \alpha| \] \[ CD = |a t_3^2 - a (t_1 t_3 + t_2 t_3 - t_1 t_2)| \] \[ = a |t_3^2 - t_1 t_3 - t_2 t_3 + t_1 t_2| \] \[ = a |t_3 (t_3 - t_1 - t_2) + t_1 t_2| \] \[ CD = a |(t_3 - t_2)(t_3 - t_1)| \] \[ \left( \frac{AM \cdot BN}{CD} \right)^2 = \left\{ \frac{2a(t_1 - t_3) \cdot 2a(t_2 - t_3)}{a(t_3 - t_2)(t_3 - t_1)} \right\}^2 \] \[ 16a^2 = 16 \times \frac{9}{4} = 36 \]

We are given:
\[ m_{AB} = m_{AD} \]
\[ \implies \frac{2}{t_1 + t_2} = \frac{2a(t_1 - t_3)}{a t_1^2 - \alpha} \]
\[ \implies a t_1^2 - \alpha = a \{ t_1^2 - t_1 t_3 + t_1 t_2 - t_2 t_3 \} \]
\[ \implies \alpha = a ( t_1 t_3 + t_2 t_3 - t_1 t_2 ) \]
\[ AM = |2a ( t_1 - t_3 )|, \quad BN = |2a ( t_2 - t_3 )|, \]
\[ CD = |a t_3^2 - \alpha| \]
\[ CD = |a t_3^2 - a ( t_1 t_3 + t_2 t_3 - t_1 t_2 ) | \]
\[ = a | t_3 ( t_3 - t_1 ) - t_2 ( t_3 - t_1 ) | \]
\[ = a | ( t_3 - t_2 ) ( t_3 - t_1 ) | \]
\[ \left( \frac{AM \cdot BN}{CD} \right)^2 = \frac{ \{ 2a ( t_1 - t_3 ) \cdot 2a ( t_2 - t_3 ) \}^2 }{ a ( t_3 - t_2 ) ( t_3 - t_1 )} \]
\[ = \frac{16 a^2}{a} \cdot \frac{( t_1 - t_3 )^2 ( t_2 - t_3 )^2 }{ ( t_3 - t_2 ) ( t_3 - t_1 )} \]
\[ 16 a^2 = 16 \times \frac{9}{4} = 36 \]
Thus, the final answer is:
\[ \boxed{36} \]
If \( S \) and \( S' \) are the foci of the ellipse \[ \frac{x^2}{18} + \frac{y^2}{9} = 1 \] and \( P \) is a point on the ellipse, then \[ \min (SP \cdot S'P) + \max (SP \cdot S'P) \] is equal to:
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
