We are given that $\text{det} = 3$ and $\text{det} = -4$. We need to find the value of $\text{det}(-6AB)$.
Using the property of determinants:
\[
\text{det}(cA) = c^n \cdot \text{det} \quad \text{for an } n \times n \text{ matrix}.
\]
For the product of two matrices, the determinant is the product of the determinants:
\[
\text{det}(AB) = \text{det} \cdot \text{det}.
\]
Now, for $-6AB$, we use the following:
\[
\text{det}(-6AB) = \text{det}(-6) \cdot \text{det} \cdot \text{det}.
\]
Since the matrix is of order 3, we get:
\[
\text{det}(-6AB) = (-6)^3 \cdot \text{det} \cdot \text{det} = (-216) \cdot 3 \cdot (-4).
\]
Therefore,
\[
\text{det}(-6AB) = 2592.
\]