AB is zero matrix
\(⇒ |A| = |B| = 0\)
Hence, neither A nor B is invertible
If \(|A| = 0\)
\(⇒ |adj A| = 0\) so adj A is not invertible
\(AX = 0\) is homogeneous system and \(|A| = 0\)
Therefore, it is having infinitely many solutions.
So, the correct option is (B): the system of linear equations \(AX = 0\) has infinitely many solutions
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is:
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.
