29
49
53
51
The correct answer is option (D) : 51
\(\frac{a^{17}(a^4+1)+b^{17}(b^4+1)}{a^{19}+b^{19}}\)
\(\alpha^2-1=7\alpha\)
\(\Rightarrow \alpha^4+1=51\alpha^2\)\(\large<^{\large{a}}_{\large{b}}\)
\(\therefore \frac{51a^{19}+51b^{19}}{a^{19}+b^{19}}\)
The correct answer is the option (D) 51
Let \( \alpha, \beta \) be the roots of the equation \( x^2 - ax - b = 0 \) with \( \text{Im}(\alpha) < \text{Im}(\beta) \). Let \( P_n = \alpha^n - \beta^n \). If \[ P_3 = -5\sqrt{7}, \quad P_4 = -3\sqrt{7}, \quad P_5 = 11\sqrt{7}, \quad P_6 = 45\sqrt{7}, \] then \( |\alpha^4 + \beta^4| \) is equal to:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?

A polynomial that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b, and c are the real numbers.
Consider the following equation ax²+bx+c=0, where a≠0 and a, b, and c are real coefficients.
The solution of a quadratic equation can be found using the formula, x=((-b±√(b²-4ac))/2a)
Read More: Nature of Roots of Quadratic Equation