Step 1: Understand the ellipse parameters
Let the ellipse be centered at the origin with standard form:
\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
\]
where \(a > b > 0\).
Step 2: Identify points on ellipse
- \(A, A'\) are endpoints of the major axis along the x-axis: \(A = (a, 0)\), \(A' = (-a, 0)\)
- \(B, B'\) are endpoints of the minor axis along the y-axis: \(B = (0, b)\), \(B' = (0, -b)\)
- \(S, S'\) are foci: \(S = (c, 0)\), \(S' = (-c, 0)\), where \(c^2 = a^2 - b^2\)
Step 3: Use given angle \(\angle BAB' = 60^\circ\)
This angle is formed at \(A\) by points \(B\) and \(B'\).
Vectors from \(A\) are:
\[
\overrightarrow{AB} = (0 - a, b - 0) = (-a, b), \quad \overrightarrow{AB'} = (0 - a, -b - 0) = (-a, -b)
\]
The angle between these vectors is 60°, so:
\[
\cos 60^\circ = \frac{\overrightarrow{AB} \cdot \overrightarrow{AB'}}{|\overrightarrow{AB}| |\overrightarrow{AB'}|}
\]
Calculate dot product:
\[
(-a)(-a) + b(-b) = a^2 - b^2
\]
Calculate magnitudes:
\[
|\overrightarrow{AB}| = \sqrt{(-a)^2 + b^2} = \sqrt{a^2 + b^2}
\]
Similarly, \(|\overrightarrow{AB'}| = \sqrt{a^2 + b^2}\)
Thus,
\[
\cos 60^\circ = \frac{a^2 - b^2}{a^2 + b^2} = \frac{c^2}{a^2 + b^2}
\]
Since \(\cos 60^\circ = \frac{1}{2}\), we get:
\[
\frac{c^2}{a^2 + b^2} = \frac{1}{2} \implies 2c^2 = a^2 + b^2
\]
Step 4: Use relation \(c^2 = a^2 - b^2\)
Substitute \(c^2\) in above:
\[
2(a^2 - b^2) = a^2 + b^2 \implies 2a^2 - 2b^2 = a^2 + b^2
\]\[
2a^2 - a^2 = 2b^2 + b^2 \implies a^2 = 3b^2
\]
Step 5: Calculate \(\angle SBS'\)
At point \(B\), vectors:
\[
\overrightarrow{BS} = (c - 0, 0 - b) = (c, -b), \quad \overrightarrow{BS'} = (-c - 0, 0 - b) = (-c, -b)
\]
Angle between these vectors is:
\[
\cos \theta = \frac{\overrightarrow{BS} \cdot \overrightarrow{BS'}}{|\overrightarrow{BS}| |\overrightarrow{BS'}|}
\]
Dot product:
\[
c \times (-c) + (-b) \times (-b) = -c^2 + b^2 = b^2 - c^2
\]
Magnitudes:
\[
|\overrightarrow{BS}| = \sqrt{c^2 + b^2}, \quad |\overrightarrow{BS'}| = \sqrt{c^2 + b^2}
\]
So,
\[
\cos \theta = \frac{b^2 - c^2}{c^2 + b^2}
\]
Substitute \(c^2 = a^2 - b^2\):
\[
\cos \theta = \frac{b^2 - (a^2 - b^2)}{(a^2 - b^2) + b^2} = \frac{b^2 - a^2 + b^2}{a^2} = \frac{2b^2 - a^2}{a^2}
\]
Using \(a^2 = 3b^2\), we get:
\[
\cos \theta = \frac{2b^2 - 3b^2}{3b^2} = \frac{-b^2}{3b^2} = -\frac{1}{3}
\]
Step 6: Find \(\tan \theta\)
\[
\cos \theta = -\frac{1}{3} \implies \theta = \cos^{-1}\left(-\frac{1}{3}\right)
\]
Calculate \(\tan \theta\) using identity:
\[
\tan \theta = \pm \sqrt{\frac{1}{\cos^2 \theta} - 1} = \pm \sqrt{\frac{1}{\frac{1}{9}} - 1} = \pm \sqrt{9 - 1} = \pm \sqrt{8} = \pm 2\sqrt{2}
\]
Since \(\cos \theta\) is negative and \(\theta\) is in second quadrant, \(\tan \theta < 0\), so:
\[
\tan \theta = -2\sqrt{2}
\]
Conclusion:
\[
\angle SBS' = \tan^{-1}(-2\sqrt{2})
\]