Question:

Let A, A' be the end points of major axis, S, S' be the foci and B, B' be the end points of minor axis of an ellipse E. If $\angle \text{BAB}' = 60^\circ$, then $\angle \text{SBS}' =$

Show Hint

Ellipse Essentials:
  • $b^2 = a^2(1 - e^2)$
  • Law of Cosines: $c^2 = a^2 + b^2 - 2ab\cos C$
  • $\cos\alpha = x \Rightarrow \tan\alpha = \pm\sqrt1 - x^2/x$
  • Use triangle symmetry and angle properties to relate geometry with algebra.
Updated On: May 17, 2025
  • $\tan^{-1}(\sqrt{2})$
  • $\tan^{-1}(-2\sqrt{2})$
  • $\tan^{-1}\left(\sqrt{\frac{2}{3}}\right)$
  • $\tan^{-1}\left(\sqrt{\frac{3}{2}}\right)$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Assume ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a>b$. Points: $A=(a,0)$, $A'=(-a,0)$, $B=(0,b)$, $B'=(0,-b)$, $S=(ae,0)$, $S'=(-ae,0)$, $e^2 = 1 - \frac{b^2}{a^2}$ Given: $\angle BAB' = 60^\circ$, triangle $BAB'$ is equilateral: \[ AB = BB' \Rightarrow \sqrt{a^2 + b^2} = 2b \Rightarrow a^2 = 3b^2 \] Then: \[ b^2 = a^2(1 - e^2) \Rightarrow \frac{a^2}{3} = a^2(1 - e^2) \Rightarrow e^2 = \frac{2}{3} \] In triangle $SBS'$, $S=(ae,0)$, $B=(0,b)$, $S'=(-ae,0)$ \[ SS' = 2ae, \quad SB = S'B = a \] Using cosine rule: \[ % Option (2ae)^2 = 2a^2 - 2a^2\cos\alpha \Rightarrow \cos\alpha = 1 - 2e^2 = -\frac{1}{3} \] \[ \tan^2\alpha = \frac{1}{\cos^2\alpha} - 1 = 9 - 1 = 8 \Rightarrow \tan\alpha = -2\sqrt{2} \]
Was this answer helpful?
0
0