Assume ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a>b$.
Points: $A=(a,0)$, $A'=(-a,0)$, $B=(0,b)$, $B'=(0,-b)$, $S=(ae,0)$, $S'=(-ae,0)$, $e^2 = 1 - \frac{b^2}{a^2}$
Given: $\angle BAB' = 60^\circ$, triangle $BAB'$ is equilateral:
\[
AB = BB' \Rightarrow \sqrt{a^2 + b^2} = 2b \Rightarrow a^2 = 3b^2
\]
Then:
\[
b^2 = a^2(1 - e^2) \Rightarrow \frac{a^2}{3} = a^2(1 - e^2) \Rightarrow e^2 = \frac{2}{3}
\]
In triangle $SBS'$, $S=(ae,0)$, $B=(0,b)$, $S'=(-ae,0)$
\[
SS' = 2ae, \quad SB = S'B = a
\]
Using cosine rule:
\[
% Option
(2ae)^2 = 2a^2 - 2a^2\cos\alpha \Rightarrow \cos\alpha = 1 - 2e^2 = -\frac{1}{3}
\]
\[
\tan^2\alpha = \frac{1}{\cos^2\alpha} - 1 = 9 - 1 = 8 \Rightarrow \tan\alpha = -2\sqrt{2}
\]