Question:

Let A, A' be the end points of major axis, S, S' be the foci and B, B' be the end points of minor axis of an ellipse E. If $\angle \text{BAB}' = 60^\circ$, then $\angle \text{SBS}' =$

Show Hint

Ellipse Essentials:
  • $b^2 = a^2(1 - e^2)$
  • Law of Cosines: $c^2 = a^2 + b^2 - 2ab\cos C$
  • $\cos\alpha = x \Rightarrow \tan\alpha = \pm\sqrt1 - x^2/x$
  • Use triangle symmetry and angle properties to relate geometry with algebra.
Updated On: May 20, 2025
  • $\tan^{-1}(\sqrt{2})$
  • $\tan^{-1}(-2\sqrt{2})$
  • $\tan^{-1}\left(\sqrt{\frac{2}{3}}\right)$
  • $\tan^{-1}\left(\sqrt{\frac{3}{2}}\right)$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Approach Solution - 1

Assume ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a>b$. Points: $A=(a,0)$, $A'=(-a,0)$, $B=(0,b)$, $B'=(0,-b)$, $S=(ae,0)$, $S'=(-ae,0)$, $e^2 = 1 - \frac{b^2}{a^2}$ Given: $\angle BAB' = 60^\circ$, triangle $BAB'$ is equilateral: \[ AB = BB' \Rightarrow \sqrt{a^2 + b^2} = 2b \Rightarrow a^2 = 3b^2 \] Then: \[ b^2 = a^2(1 - e^2) \Rightarrow \frac{a^2}{3} = a^2(1 - e^2) \Rightarrow e^2 = \frac{2}{3} \] In triangle $SBS'$, $S=(ae,0)$, $B=(0,b)$, $S'=(-ae,0)$ \[ SS' = 2ae, \quad SB = S'B = a \] Using cosine rule: \[ % Option (2ae)^2 = 2a^2 - 2a^2\cos\alpha \Rightarrow \cos\alpha = 1 - 2e^2 = -\frac{1}{3} \] \[ \tan^2\alpha = \frac{1}{\cos^2\alpha} - 1 = 9 - 1 = 8 \Rightarrow \tan\alpha = -2\sqrt{2} \]
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Understand the ellipse parameters
Let the ellipse be centered at the origin with standard form:
\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \] where \(a > b > 0\).

Step 2: Identify points on ellipse
- \(A, A'\) are endpoints of the major axis along the x-axis: \(A = (a, 0)\), \(A' = (-a, 0)\)
- \(B, B'\) are endpoints of the minor axis along the y-axis: \(B = (0, b)\), \(B' = (0, -b)\)
- \(S, S'\) are foci: \(S = (c, 0)\), \(S' = (-c, 0)\), where \(c^2 = a^2 - b^2\)

Step 3: Use given angle \(\angle BAB' = 60^\circ\)
This angle is formed at \(A\) by points \(B\) and \(B'\).
Vectors from \(A\) are:
\[ \overrightarrow{AB} = (0 - a, b - 0) = (-a, b), \quad \overrightarrow{AB'} = (0 - a, -b - 0) = (-a, -b) \]
The angle between these vectors is 60°, so:
\[ \cos 60^\circ = \frac{\overrightarrow{AB} \cdot \overrightarrow{AB'}}{|\overrightarrow{AB}| |\overrightarrow{AB'}|} \]
Calculate dot product:
\[ (-a)(-a) + b(-b) = a^2 - b^2 \]
Calculate magnitudes:
\[ |\overrightarrow{AB}| = \sqrt{(-a)^2 + b^2} = \sqrt{a^2 + b^2} \] Similarly, \(|\overrightarrow{AB'}| = \sqrt{a^2 + b^2}\)
Thus,
\[ \cos 60^\circ = \frac{a^2 - b^2}{a^2 + b^2} = \frac{c^2}{a^2 + b^2} \]
Since \(\cos 60^\circ = \frac{1}{2}\), we get:
\[ \frac{c^2}{a^2 + b^2} = \frac{1}{2} \implies 2c^2 = a^2 + b^2 \]

Step 4: Use relation \(c^2 = a^2 - b^2\)
Substitute \(c^2\) in above:
\[ 2(a^2 - b^2) = a^2 + b^2 \implies 2a^2 - 2b^2 = a^2 + b^2 \]\[ 2a^2 - a^2 = 2b^2 + b^2 \implies a^2 = 3b^2 \]

Step 5: Calculate \(\angle SBS'\)
At point \(B\), vectors:
\[ \overrightarrow{BS} = (c - 0, 0 - b) = (c, -b), \quad \overrightarrow{BS'} = (-c - 0, 0 - b) = (-c, -b) \]
Angle between these vectors is:
\[ \cos \theta = \frac{\overrightarrow{BS} \cdot \overrightarrow{BS'}}{|\overrightarrow{BS}| |\overrightarrow{BS'}|} \]
Dot product:
\[ c \times (-c) + (-b) \times (-b) = -c^2 + b^2 = b^2 - c^2 \]
Magnitudes:
\[ |\overrightarrow{BS}| = \sqrt{c^2 + b^2}, \quad |\overrightarrow{BS'}| = \sqrt{c^2 + b^2} \]
So,
\[ \cos \theta = \frac{b^2 - c^2}{c^2 + b^2} \]
Substitute \(c^2 = a^2 - b^2\):
\[ \cos \theta = \frac{b^2 - (a^2 - b^2)}{(a^2 - b^2) + b^2} = \frac{b^2 - a^2 + b^2}{a^2} = \frac{2b^2 - a^2}{a^2} \]
Using \(a^2 = 3b^2\), we get:
\[ \cos \theta = \frac{2b^2 - 3b^2}{3b^2} = \frac{-b^2}{3b^2} = -\frac{1}{3} \]

Step 6: Find \(\tan \theta\)
\[ \cos \theta = -\frac{1}{3} \implies \theta = \cos^{-1}\left(-\frac{1}{3}\right) \]
Calculate \(\tan \theta\) using identity:
\[ \tan \theta = \pm \sqrt{\frac{1}{\cos^2 \theta} - 1} = \pm \sqrt{\frac{1}{\frac{1}{9}} - 1} = \pm \sqrt{9 - 1} = \pm \sqrt{8} = \pm 2\sqrt{2} \]
Since \(\cos \theta\) is negative and \(\theta\) is in second quadrant, \(\tan \theta < 0\), so:
\[ \tan \theta = -2\sqrt{2} \]

Conclusion:
\[ \angle SBS' = \tan^{-1}(-2\sqrt{2}) \]
Was this answer helpful?
0
0