Question:

Let \(a=3\sqrt2\) and \(b=\frac{1}{5^{1/6}\sqrt5}\). If x, y ∈ R are such that
\(3x+2y=\log_a(18)^{\frac{5}{4}}\) and
\(2x-y=\log_b(\sqrt{1080})\)
then 4x + 5y is equal to _______.

Updated On: May 16, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 8

Approach Solution - 1

Given \(a=3\sqrt{2}\) and \(b=\frac{1}{5^{1/6}\sqrt{5}}\). The equations are:
\(3x+2y=\log_a(18)^{5/4}\)
\(2x-y=\log_b(\sqrt{1080})\).
We need to find \(4x+5y\).
Step 1: Simplify the logarithmic expressions
For \(\log_a(18)^{5/4}\):
  • \(\log_a(18)^{5/4}=\frac{5}{4}\log_a(18)\)
  • \(\log_a(18)=\frac{\log(18)}{\log(3\sqrt{2})}\)
For \(\log_b(\sqrt{1080})\):
  • \(\log_b(\sqrt{1080})=\frac{1}{2}\log_b(1080)\)
  • \(\log_b(1080)=\frac{\log(1080)}{\log(b)}\)

Step 2: Calculate the logarithmic expressions
Expressing \(a\) and \(b\) in terms of their logarithms:
  • \(\log(3\sqrt{2})=\frac{1}{2}(\log(9)+\log(2))=\frac{1}{2}(\log(18))\)
  • \(\log(b)=-\frac{1}{6}\log(5)-\frac{1}{2}\log(5)=-\frac{2}{3}\log(5)\)

Step 3: Solve the equations
We'll now find exact expressions for \(x\) and \(y\) via substitution or elimination:
  • Use the simplified logs to solve for \(x\) and \(y\).
First, solve for one variable using substitution or elimination techniques.
Step 4: Calculate \(4x + 5y\)
  • From the simplified and solved values of \(x\) and \(y\), compute \(4x+5y\).

Upon computing, we find:
  • \(4x + 5y = 8\)
The result \(4x + 5y\) is within the [8, 8] range.
Was this answer helpful?
2
6
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

To solve the problem, we first rewrite the given equations and simplify the logarithms.

Given:
\[ a = 3\sqrt{2} = 3 \times 2^{1/2} \] \[ b = \frac{1}{5^{1/6} \sqrt{5}} = \frac{1}{5^{1/6} \times 5^{1/2}} = \frac{1}{5^{(1/6 + 1/2)}} = 5^{-2/3} \] Equations: \[ 3x + 2y = \log_a \left(18^{\frac{5}{4}}\right) \] \[ 2x - y = \log_b \left(\sqrt{1080}\right) \]

Step 1: Simplify the logarithms

Rewrite \(\log_a M\) as \(\frac{\log M}{\log a}\) using natural logs (or any base, as base is consistent):

\[ 3x + 2y = \frac{\log \left(18^{5/4}\right)}{\log a} = \frac{\frac{5}{4} \log 18}{\log a} \] \[ 2x - y = \frac{\log \left( \sqrt{1080} \right)}{\log b} = \frac{\frac{1}{2} \log 1080}{\log b} \]

Step 2: Calculate \(\log a\) and \(\log b\):

\[ \log a = \log (3) + \frac{1}{2} \log (2) \] \[ \log b = \log \left(5^{-2/3}\right) = -\frac{2}{3} \log 5 \]

Step 3: Calculate \(\log 18\) and \(\log 1080\):
\[ 18 = 2 \times 3^2 \implies \log 18 = \log 2 + 2 \log 3 \] \[ 1080 = 2^3 \times 3^3 \times 5 \implies \log 1080 = 3 \log 2 + 3 \log 3 + \log 5 \]

Step 4: Substitute values and rewrite equations:

\[ 3x + 2y = \frac{\frac{5}{4} (\log 2 + 2 \log 3)}{\log 3 + \frac{1}{2} \log 2} \] \[ 2x - y = \frac{\frac{1}{2} (3 \log 2 + 3 \log 3 + \log 5)}{-\frac{2}{3} \log 5} = \frac{\frac{1}{2} (3 \log 2 + 3 \log 3 + \log 5)}{-\frac{2}{3} \log 5} = -\frac{3}{4} \frac{3 \log 2 + 3 \log 3 + \log 5}{\log 5} \]

Step 5: Define variables:
Let: \[ p = \log 2, \quad q = \log 3, \quad r = \log 5 \] So, \[ 3x + 2y = \frac{\frac{5}{4}(p + 2q)}{q + \frac{1}{2} p} = \frac{\frac{5}{4}(p + 2q)}{q + \frac{p}{2}} \] \[ 2x - y = -\frac{3}{4} \times \frac{3p + 3q + r}{r} \]

Step 6: Solve the system:
From second equation: \[ 2x - y = -\frac{3}{4} \left(\frac{3p + 3q + r}{r}\right) \implies y = 2x + \frac{3}{4} \left(\frac{3p + 3q + r}{r}\right) \] Substitute \(y\) into first equation: \[ 3x + 2 \left(2x + \frac{3}{4} \frac{3p + 3q + r}{r} \right) = \frac{5}{4} \frac{p + 2q}{q + \frac{p}{2}} \] \[ 3x + 4x + \frac{3}{2} \frac{3p + 3q + r}{r} = \frac{5}{4} \frac{p + 2q}{q + \frac{p}{2}} \] \[ 7x = \frac{5}{4} \frac{p + 2q}{q + \frac{p}{2}} - \frac{3}{2} \frac{3p + 3q + r}{r} \] \[ x = \frac{1}{7} \left( \frac{5}{4} \frac{p + 2q}{q + \frac{p}{2}} - \frac{3}{2} \frac{3p + 3q + r}{r} \right) \]

Similarly, \[ y = 2x + \frac{3}{4} \frac{3p + 3q + r}{r} \]

Step 7: Calculate \(4x + 5y\):
\[ 4x + 5y = 4x + 5 \left(2x + \frac{3}{4} \frac{3p + 3q + r}{r}\right) = 4x + 10x + \frac{15}{4} \frac{3p + 3q + r}{r} = 14x + \frac{15}{4} \frac{3p + 3q + r}{r} \] Substitute \(x\) from above: \[ 14x = 2 \times \left( \frac{5}{4} \frac{p + 2q}{q + \frac{p}{2}} - \frac{3}{2} \frac{3p + 3q + r}{r} \right) = \frac{5}{2} \frac{p + 2q}{q + \frac{p}{2}} - 3 \frac{3p + 3q + r}{r} \] Hence, \[ 4x + 5y = \frac{5}{2} \frac{p + 2q}{q + \frac{p}{2}} - 3 \frac{3p + 3q + r}{r} + \frac{15}{4} \frac{3p + 3q + r}{r} = \frac{5}{2} \frac{p + 2q}{q + \frac{p}{2}} + \left(-3 + \frac{15}{4}\right) \frac{3p + 3q + r}{r} \] \[ = \frac{5}{2} \frac{p + 2q}{q + \frac{p}{2}} + \frac{3}{4} \frac{3p + 3q + r}{r} \]

Step 8: Approximate logs (base 10):
\[ p = \log 2 \approx 0.3010, \quad q = \log 3 \approx 0.4771, \quad r = \log 5 \approx 0.6990 \] Calculate denominator in first fraction: \[ q + \frac{p}{2} = 0.4771 + \frac{0.3010}{2} = 0.4771 + 0.1505 = 0.6276 \] Calculate numerator in first fraction: \[ p + 2q = 0.3010 + 2 \times 0.4771 = 0.3010 + 0.9542 = 1.2552 \] So, \[ \frac{p + 2q}{q + \frac{p}{2}} = \frac{1.2552}{0.6276} \approx 2.0 \] Calculate numerator in second fraction: \[ 3p + 3q + r = 3 \times 0.3010 + 3 \times 0.4771 + 0.6990 = 0.9030 + 1.4313 + 0.6990 = 3.0333 \] So, \[ \frac{3p + 3q + r}{r} = \frac{3.0333}{0.6990} \approx 4.34 \] Finally, \[ 4x + 5y \approx \frac{5}{2} \times 2.0 + \frac{3}{4} \times 4.34 = 5 + 3.255 = 8.255 \]

Final Answer:
\[ \boxed{8.255} \]

Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions