To solve the problem, we first rewrite the given equations and simplify the logarithms.
Given:
\[
a = 3\sqrt{2} = 3 \times 2^{1/2}
\]
\[
b = \frac{1}{5^{1/6} \sqrt{5}} = \frac{1}{5^{1/6} \times 5^{1/2}} = \frac{1}{5^{(1/6 + 1/2)}} = 5^{-2/3}
\]
Equations:
\[
3x + 2y = \log_a \left(18^{\frac{5}{4}}\right)
\]
\[
2x - y = \log_b \left(\sqrt{1080}\right)
\]
Step 1: Simplify the logarithms
Rewrite \(\log_a M\) as \(\frac{\log M}{\log a}\) using natural logs (or any base, as base is consistent):
\[ 3x + 2y = \frac{\log \left(18^{5/4}\right)}{\log a} = \frac{\frac{5}{4} \log 18}{\log a} \] \[ 2x - y = \frac{\log \left( \sqrt{1080} \right)}{\log b} = \frac{\frac{1}{2} \log 1080}{\log b} \]Step 2: Calculate \(\log a\) and \(\log b\):
\[ \log a = \log (3) + \frac{1}{2} \log (2) \] \[ \log b = \log \left(5^{-2/3}\right) = -\frac{2}{3} \log 5 \]Step 3: Calculate \(\log 18\) and \(\log 1080\):
\[
18 = 2 \times 3^2 \implies \log 18 = \log 2 + 2 \log 3
\]
\[
1080 = 2^3 \times 3^3 \times 5 \implies \log 1080 = 3 \log 2 + 3 \log 3 + \log 5
\]
Step 4: Substitute values and rewrite equations:
\[ 3x + 2y = \frac{\frac{5}{4} (\log 2 + 2 \log 3)}{\log 3 + \frac{1}{2} \log 2} \] \[ 2x - y = \frac{\frac{1}{2} (3 \log 2 + 3 \log 3 + \log 5)}{-\frac{2}{3} \log 5} = \frac{\frac{1}{2} (3 \log 2 + 3 \log 3 + \log 5)}{-\frac{2}{3} \log 5} = -\frac{3}{4} \frac{3 \log 2 + 3 \log 3 + \log 5}{\log 5} \]Step 5: Define variables:
Let:
\[
p = \log 2, \quad q = \log 3, \quad r = \log 5
\]
So,
\[
3x + 2y = \frac{\frac{5}{4}(p + 2q)}{q + \frac{1}{2} p} = \frac{\frac{5}{4}(p + 2q)}{q + \frac{p}{2}}
\]
\[
2x - y = -\frac{3}{4} \times \frac{3p + 3q + r}{r}
\]
Step 6: Solve the system:
From second equation:
\[
2x - y = -\frac{3}{4} \left(\frac{3p + 3q + r}{r}\right)
\implies y = 2x + \frac{3}{4} \left(\frac{3p + 3q + r}{r}\right)
\]
Substitute \(y\) into first equation:
\[
3x + 2 \left(2x + \frac{3}{4} \frac{3p + 3q + r}{r} \right) = \frac{5}{4} \frac{p + 2q}{q + \frac{p}{2}}
\]
\[
3x + 4x + \frac{3}{2} \frac{3p + 3q + r}{r} = \frac{5}{4} \frac{p + 2q}{q + \frac{p}{2}}
\]
\[
7x = \frac{5}{4} \frac{p + 2q}{q + \frac{p}{2}} - \frac{3}{2} \frac{3p + 3q + r}{r}
\]
\[
x = \frac{1}{7} \left( \frac{5}{4} \frac{p + 2q}{q + \frac{p}{2}} - \frac{3}{2} \frac{3p + 3q + r}{r} \right)
\]
Similarly, \[ y = 2x + \frac{3}{4} \frac{3p + 3q + r}{r} \]
Step 7: Calculate \(4x + 5y\):
\[
4x + 5y = 4x + 5 \left(2x + \frac{3}{4} \frac{3p + 3q + r}{r}\right) = 4x + 10x + \frac{15}{4} \frac{3p + 3q + r}{r} = 14x + \frac{15}{4} \frac{3p + 3q + r}{r}
\]
Substitute \(x\) from above:
\[
14x = 2 \times \left( \frac{5}{4} \frac{p + 2q}{q + \frac{p}{2}} - \frac{3}{2} \frac{3p + 3q + r}{r} \right) = \frac{5}{2} \frac{p + 2q}{q + \frac{p}{2}} - 3 \frac{3p + 3q + r}{r}
\]
Hence,
\[
4x + 5y = \frac{5}{2} \frac{p + 2q}{q + \frac{p}{2}} - 3 \frac{3p + 3q + r}{r} + \frac{15}{4} \frac{3p + 3q + r}{r} = \frac{5}{2} \frac{p + 2q}{q + \frac{p}{2}} + \left(-3 + \frac{15}{4}\right) \frac{3p + 3q + r}{r}
\]
\[
= \frac{5}{2} \frac{p + 2q}{q + \frac{p}{2}} + \frac{3}{4} \frac{3p + 3q + r}{r}
\]
Step 8: Approximate logs (base 10):
\[
p = \log 2 \approx 0.3010, \quad q = \log 3 \approx 0.4771, \quad r = \log 5 \approx 0.6990
\]
Calculate denominator in first fraction:
\[
q + \frac{p}{2} = 0.4771 + \frac{0.3010}{2} = 0.4771 + 0.1505 = 0.6276
\]
Calculate numerator in first fraction:
\[
p + 2q = 0.3010 + 2 \times 0.4771 = 0.3010 + 0.9542 = 1.2552
\]
So,
\[
\frac{p + 2q}{q + \frac{p}{2}} = \frac{1.2552}{0.6276} \approx 2.0
\]
Calculate numerator in second fraction:
\[
3p + 3q + r = 3 \times 0.3010 + 3 \times 0.4771 + 0.6990 = 0.9030 + 1.4313 + 0.6990 = 3.0333
\]
So,
\[
\frac{3p + 3q + r}{r} = \frac{3.0333}{0.6990} \approx 4.34
\]
Finally,
\[
4x + 5y \approx \frac{5}{2} \times 2.0 + \frac{3}{4} \times 4.34 = 5 + 3.255 = 8.255
\]
Final Answer:
\[
\boxed{8.255}
\]
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 