Given:
\[ a = 3\sqrt{2}, \quad b = \frac{1}{5^{1/6} \sqrt{6}}. \]
Using the property:
\[ \log_a(b^n) = n \log_a(b), \]
we get:
\[ \log_a \left(\frac{185}{4} \right) = \frac{5}{4} \log_{3\sqrt{2}} (18). \]
Now, express \( \log_{3\sqrt{2}}(18) \):
\[ \log_{3\sqrt{2}}(18) = \frac{\log(18)}{\log(3\sqrt{2})}. \]
Since:
\[ \log(18) = 2\log(3) + \log(2), \quad \log(\sqrt{2}) = \frac{1}{2} \log(2), \]
we substitute:
\[ \log_{3\sqrt{2}}(18) = \frac{2 \log(3) + \log(2)}{\log(3) + \frac{1}{2} \log(2)}. \]
Numerically, this evaluates to:
\[ \log_a \left( \frac{185}{4} \right) = \frac{5}{2}. \]
Thus, we get the equation:
\[ 3x + 2y = \frac{5}{2}. \quad \text{(Equation 1)} \]
Using the property:
\[ \log_{1/a}(b) = -\log_a(b), \]
we obtain:
\[ \log_b (\sqrt{1080}) = -\log_{5^{1/6} \sqrt{6}} (\sqrt{1080}). \]
Express \( \sqrt{1080} \) as:
\[ \sqrt{1080} = \sqrt{36 \times 30} = 6\sqrt{30}. \]
Now,
\[ \log_{5^{1/6} \sqrt{6}} (6\sqrt{30}) = \frac{\log(6\sqrt{30})}{\log(5^{1/6} \sqrt{6})}. \]
Simplifying:
\[ \log(6\sqrt{30}) = \log(6) + \frac{1}{2} \log(30). \]
Numerically, this evaluates to:
\[ \log_b (\sqrt{1080}) = -3. \]
Thus, we get the equation:
\[ 2x - y = -3. \quad \text{(Equation 2)} \]
From (1):
\[ 3x + 2y = \frac{5}{2}. \]
From (2):
\[ 2x - y = -3. \]
Multiply (2) by 2:
\[ 4x - 2y = -6. \]
Adding to (1):
\[ 3x + 2y + 4x - 2y = \frac{5}{2} - 6. \] \[ 7x = -\frac{7}{2} \Rightarrow x = -\frac{1}{2}. \]
Substituting \( x = -\frac{1}{2} \) into (2):
\[ 2 \times \left(-\frac{1}{2}\right) - y = -3. \] \[ -1 - y = -3 \Rightarrow y = 2. \]
\[ 4x + 5y = 4 \times \left(-\frac{1}{2}\right) + 5(2). \] \[ = -2 + 10 = 8. \]
Final Answer:
\[ \mathbf{8} \]
If (2,-1,3) is the foot of the perpendicular drawn from the origin to a plane, then the equation of that plane is