To solve the problem, we first rewrite the given equations and simplify the logarithms.
Given:
\[
a = 3\sqrt{2} = 3 \times 2^{1/2}
\]
\[
b = \frac{1}{5^{1/6} \sqrt{5}} = \frac{1}{5^{1/6} \times 5^{1/2}} = \frac{1}{5^{(1/6 + 1/2)}} = 5^{-2/3}
\]
Equations:
\[
3x + 2y = \log_a \left(18^{\frac{5}{4}}\right)
\]
\[
2x - y = \log_b \left(\sqrt{1080}\right)
\]
Step 1: Simplify the logarithms
Rewrite \(\log_a M\) as \(\frac{\log M}{\log a}\) using natural logs (or any base, as base is consistent):
\[ 3x + 2y = \frac{\log \left(18^{5/4}\right)}{\log a} = \frac{\frac{5}{4} \log 18}{\log a} \] \[ 2x - y = \frac{\log \left( \sqrt{1080} \right)}{\log b} = \frac{\frac{1}{2} \log 1080}{\log b} \]Step 2: Calculate \(\log a\) and \(\log b\):
\[ \log a = \log (3) + \frac{1}{2} \log (2) \] \[ \log b = \log \left(5^{-2/3}\right) = -\frac{2}{3} \log 5 \]Step 3: Calculate \(\log 18\) and \(\log 1080\):
\[
18 = 2 \times 3^2 \implies \log 18 = \log 2 + 2 \log 3
\]
\[
1080 = 2^3 \times 3^3 \times 5 \implies \log 1080 = 3 \log 2 + 3 \log 3 + \log 5
\]
Step 4: Substitute values and rewrite equations:
\[ 3x + 2y = \frac{\frac{5}{4} (\log 2 + 2 \log 3)}{\log 3 + \frac{1}{2} \log 2} \] \[ 2x - y = \frac{\frac{1}{2} (3 \log 2 + 3 \log 3 + \log 5)}{-\frac{2}{3} \log 5} = \frac{\frac{1}{2} (3 \log 2 + 3 \log 3 + \log 5)}{-\frac{2}{3} \log 5} = -\frac{3}{4} \frac{3 \log 2 + 3 \log 3 + \log 5}{\log 5} \]Step 5: Define variables:
Let:
\[
p = \log 2, \quad q = \log 3, \quad r = \log 5
\]
So,
\[
3x + 2y = \frac{\frac{5}{4}(p + 2q)}{q + \frac{1}{2} p} = \frac{\frac{5}{4}(p + 2q)}{q + \frac{p}{2}}
\]
\[
2x - y = -\frac{3}{4} \times \frac{3p + 3q + r}{r}
\]
Step 6: Solve the system:
From second equation:
\[
2x - y = -\frac{3}{4} \left(\frac{3p + 3q + r}{r}\right)
\implies y = 2x + \frac{3}{4} \left(\frac{3p + 3q + r}{r}\right)
\]
Substitute \(y\) into first equation:
\[
3x + 2 \left(2x + \frac{3}{4} \frac{3p + 3q + r}{r} \right) = \frac{5}{4} \frac{p + 2q}{q + \frac{p}{2}}
\]
\[
3x + 4x + \frac{3}{2} \frac{3p + 3q + r}{r} = \frac{5}{4} \frac{p + 2q}{q + \frac{p}{2}}
\]
\[
7x = \frac{5}{4} \frac{p + 2q}{q + \frac{p}{2}} - \frac{3}{2} \frac{3p + 3q + r}{r}
\]
\[
x = \frac{1}{7} \left( \frac{5}{4} \frac{p + 2q}{q + \frac{p}{2}} - \frac{3}{2} \frac{3p + 3q + r}{r} \right)
\]
Similarly, \[ y = 2x + \frac{3}{4} \frac{3p + 3q + r}{r} \]
Step 7: Calculate \(4x + 5y\):
\[
4x + 5y = 4x + 5 \left(2x + \frac{3}{4} \frac{3p + 3q + r}{r}\right) = 4x + 10x + \frac{15}{4} \frac{3p + 3q + r}{r} = 14x + \frac{15}{4} \frac{3p + 3q + r}{r}
\]
Substitute \(x\) from above:
\[
14x = 2 \times \left( \frac{5}{4} \frac{p + 2q}{q + \frac{p}{2}} - \frac{3}{2} \frac{3p + 3q + r}{r} \right) = \frac{5}{2} \frac{p + 2q}{q + \frac{p}{2}} - 3 \frac{3p + 3q + r}{r}
\]
Hence,
\[
4x + 5y = \frac{5}{2} \frac{p + 2q}{q + \frac{p}{2}} - 3 \frac{3p + 3q + r}{r} + \frac{15}{4} \frac{3p + 3q + r}{r} = \frac{5}{2} \frac{p + 2q}{q + \frac{p}{2}} + \left(-3 + \frac{15}{4}\right) \frac{3p + 3q + r}{r}
\]
\[
= \frac{5}{2} \frac{p + 2q}{q + \frac{p}{2}} + \frac{3}{4} \frac{3p + 3q + r}{r}
\]
Step 8: Approximate logs (base 10):
\[
p = \log 2 \approx 0.3010, \quad q = \log 3 \approx 0.4771, \quad r = \log 5 \approx 0.6990
\]
Calculate denominator in first fraction:
\[
q + \frac{p}{2} = 0.4771 + \frac{0.3010}{2} = 0.4771 + 0.1505 = 0.6276
\]
Calculate numerator in first fraction:
\[
p + 2q = 0.3010 + 2 \times 0.4771 = 0.3010 + 0.9542 = 1.2552
\]
So,
\[
\frac{p + 2q}{q + \frac{p}{2}} = \frac{1.2552}{0.6276} \approx 2.0
\]
Calculate numerator in second fraction:
\[
3p + 3q + r = 3 \times 0.3010 + 3 \times 0.4771 + 0.6990 = 0.9030 + 1.4313 + 0.6990 = 3.0333
\]
So,
\[
\frac{3p + 3q + r}{r} = \frac{3.0333}{0.6990} \approx 4.34
\]
Finally,
\[
4x + 5y \approx \frac{5}{2} \times 2.0 + \frac{3}{4} \times 4.34 = 5 + 3.255 = 8.255
\]
Final Answer:
\[
\boxed{8.255}
\]