Let $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$, and $\vec{b}$ and $\vec{c}$ be two nonzero vectors such that $|\vec{a}+\vec{b}+\vec{c}|=|\vec{a}+\vec{b}-\vec{c}|$ and $\vec{b} \cdot \vec{c}=0$. Consider the following two statements:
(A) $|\vec{a}+\lambda \vec{c}| \geq|\vec{a}|$ for all $\lambda \in R$
(B) $\vec{a}$ and $\vec{c}$ are always parallel. Then. is
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)