We are given the equation:
\[
\frac{x-1}{3} = \frac{y+1}{2} = -\frac{z}{1}.
\]
This equation represents a direction cosines relationship. The general equation for direction cosines is:
\[
\frac{x}{a} = \frac{y}{b} = \frac{z}{c},
\]
where \(a\), \(b\), and \(c\) represent the direction ratios of the line, and \(x\), \(y\), and \(z\) are the coordinates.
Comparing the given equation with this form, we get:
\[
\frac{x-1}{3} = \frac{y+1}{2} = -\frac{z}{1}.
\]
Thus, the direction ratios are:
\[
a = 3, \quad b = 2, \quad c = -1.
\]
The direction cosines are given by:
\[
\cos\alpha = \frac{a}{\sqrt{a^2 + b^2 + c^2}}, \quad \cos\beta = \frac{b}{\sqrt{a^2 + b^2 + c^2}}, \quad \cos\gamma = \frac{c}{\sqrt{a^2 + b^2 + c^2}}.
\]
Step 1: Calculate the magnitude of the direction ratios:
\[
\sqrt{a^2 + b^2 + c^2} = \sqrt{3^2 + 2^2 + (-1)^2} = \sqrt{9 + 4 + 1} = \sqrt{14}.
\]
Step 2: Calculate the direction cosines:
\[
\cos\alpha = \frac{3}{\sqrt{14}}, \quad \cos\beta = \frac{2}{\sqrt{14}}, \quad \cos\gamma = \frac{-1}{\sqrt{14}}.
\]
Thus, the correct answer is option (A):
\[
(\cos\alpha, \cos\beta, \cos\gamma) = \left( \frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{-1}{\sqrt{14}} \right).
\]
Therefore, the correct answer is option (A).