Question:

If \( \alpha, \beta, \gamma \) are the angles made by \[ \frac{x-1}{3} = \frac{y+1}{2} = -\frac{z}{1} \text{ with the coordinate axes, then } \] \((\cos\alpha, \cos\beta, \cos\gamma) = \)

Show Hint

The direction cosines are found by dividing the direction ratios of the line by the magnitude of the direction ratios. Always compute the magnitude first, then divide each direction ratio by the magnitude to find the direction cosines.
Updated On: Mar 11, 2025
  • \( \left( \frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{-1}{\sqrt{14}} \right) \)
  • \( \left( \frac{3}{\sqrt{7}}, \frac{-2}{\sqrt{7}}, \frac{-1}{\sqrt{7}} \right) \)
  • \( \left( \frac{3}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{-1}{\sqrt{14}} \right) \)
  • \( \left( \frac{3}{\sqrt{7}}, \frac{3}{\sqrt{7}}, \frac{-1}{\sqrt{7}} \right) \)
  • \( \left( \frac{-3}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{-1}{\sqrt{14}} \right) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

We are given the equation: \[ \frac{x-1}{3} = \frac{y+1}{2} = -\frac{z}{1}. \] This equation represents a direction cosines relationship. The general equation for direction cosines is: \[ \frac{x}{a} = \frac{y}{b} = \frac{z}{c}, \] where \(a\), \(b\), and \(c\) represent the direction ratios of the line, and \(x\), \(y\), and \(z\) are the coordinates. Comparing the given equation with this form, we get: \[ \frac{x-1}{3} = \frac{y+1}{2} = -\frac{z}{1}. \] Thus, the direction ratios are: \[ a = 3, \quad b = 2, \quad c = -1. \] The direction cosines are given by: \[ \cos\alpha = \frac{a}{\sqrt{a^2 + b^2 + c^2}}, \quad \cos\beta = \frac{b}{\sqrt{a^2 + b^2 + c^2}}, \quad \cos\gamma = \frac{c}{\sqrt{a^2 + b^2 + c^2}}. \] Step 1: Calculate the magnitude of the direction ratios: \[ \sqrt{a^2 + b^2 + c^2} = \sqrt{3^2 + 2^2 + (-1)^2} = \sqrt{9 + 4 + 1} = \sqrt{14}. \] Step 2: Calculate the direction cosines: \[ \cos\alpha = \frac{3}{\sqrt{14}}, \quad \cos\beta = \frac{2}{\sqrt{14}}, \quad \cos\gamma = \frac{-1}{\sqrt{14}}. \] Thus, the correct answer is option (A): \[ (\cos\alpha, \cos\beta, \cos\gamma) = \left( \frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{-1}{\sqrt{14}} \right). \] Therefore, the correct answer is option (A).
Was this answer helpful?
0
0