Let $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$, and $\vec{b}$ and $\vec{c}$ be two nonzero vectors such that $|\vec{a}+\vec{b}+\vec{c}|=|\vec{a}+\vec{b}-\vec{c}|$ and $\vec{b} \cdot \vec{c}=0$. Consider the following two statements:
(A) $|\vec{a}+\lambda \vec{c}| \geq|\vec{a}|$ for all $\lambda \in R$
(B) $\vec{a}$ and $\vec{c}$ are always parallel. Then. is
When a vector is multiplied by a scalar quantity, the magnitude of the vector changes in proportion to the scalar magnitude, but the direction of the vector remains the same.
In contrast, the scalar has only magnitude, and the vectors have both magnitude and direction. To determine the magnitude of a vector, we must first find the length of the vector. The magnitude of a vector formula denoted as 'v', is used to compute the length of a given vector ‘v’. So, in essence, this variable is the distance between the vector's initial point and to the endpoint.