The given expression is:
\(\frac{281.(7) + 218.(6i \, \sin(x))}{7 - 3i \, (\cos(x))}\)
We simplify this as:
\(\Rightarrow 281\left(\frac{7 + 6i \, \sin(x)}{7 - 3i \, \cos(x)}\right)\)
Next, we multiply both the numerator and denominator by \(7 + 3i \, \sin(x)\):
\(\Rightarrow 281\left(\frac{49 + 21i (\cos(x) + 2 \sin(x)) + 18 \sin(x) \cos(x)}{49 + 9 \cos^2(x)}\right)\)
This simplifies to:
\(\Rightarrow \left(\frac{49 + 18 \sin(x) \cos(x)}{49 + 9 \cos^2(x)} + i \frac{21 (\cos(x) + 2 \sin(x))}{49 + 9 \cos^2(x)}\right)\)
Hence, we can conclude that:
\(\frac{21 \cos(x) + 2 \sin(x)}{49 + 9 \cos^2(x)} = 0\)
Therefore, the value of \( n \) is 281.
Thus, the value of \( n \) is 281.
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
A Complex Number is written in the form
a + ib
where,
The Complex Number consists of a symbol “i” which satisfies the condition i^2 = −1. Complex Numbers are mentioned as the extension of one-dimensional number lines. In a complex plane, a Complex Number indicated as a + bi is usually represented in the form of the point (a, b). We have to pay attention that a Complex Number with absolutely no real part, such as – i, -5i, etc, is called purely imaginary. Also, a Complex Number with perfectly no imaginary part is known as a real number.