Consider the function:
\[ f(x) = 1 + \frac{(1 + x)}{1!} + \frac{(1 + x)^2}{2!} + \frac{(1 + x)^3}{3!} + \dots \]
This represents the series expansion for \(e^{1+x}\).
We also have:
\[ \frac{e^{1+x}}{1+x} = 1 + \frac{(1 + x)}{1!} + \frac{(1 + x)^2}{2!} + \frac{(1 + x)^3}{3!} + \dots \]
Identifying the coefficient of \(x^2\) in the right-hand side (RHS), we find:
\[ \text{Coefficient of } x^2 \text{ in RHS: } 1 + \frac{2C_2}{3} + \frac{3C_2}{4} + \dots = a. \]
For the left-hand side (LHS), we consider:
\[ e \left(1 + \frac{x^2}{2!}\right) \left(1 - x + \frac{x^2}{2!}\right) \]
This simplifies to terms where the coefficient of \(x^2\) matches the expansion on the RHS: \[ e - e + \frac{e}{2!} = a. \]
For the series for \(b\), we have:
\[ b = 1 + \frac{2}{1!} + \frac{2^2}{2!} + \frac{2^3}{3!} + \dots = e^2. \]
Finally, we evaluate:
\[ \frac{2b}{a^2} = 8. \]
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
