Consider the function:
\[ f(x) = 1 + \frac{(1 + x)}{1!} + \frac{(1 + x)^2}{2!} + \frac{(1 + x)^3}{3!} + \dots \]
This represents the series expansion for \(e^{1+x}\).
We also have:
\[ \frac{e^{1+x}}{1+x} = 1 + \frac{(1 + x)}{1!} + \frac{(1 + x)^2}{2!} + \frac{(1 + x)^3}{3!} + \dots \]
Identifying the coefficient of \(x^2\) in the right-hand side (RHS), we find:
\[ \text{Coefficient of } x^2 \text{ in RHS: } 1 + \frac{2C_2}{3} + \frac{3C_2}{4} + \dots = a. \]
For the left-hand side (LHS), we consider:
\[ e \left(1 + \frac{x^2}{2!}\right) \left(1 - x + \frac{x^2}{2!}\right) \]
This simplifies to terms where the coefficient of \(x^2\) matches the expansion on the RHS: \[ e - e + \frac{e}{2!} = a. \]
For the series for \(b\), we have:
\[ b = 1 + \frac{2}{1!} + \frac{2^2}{2!} + \frac{2^3}{3!} + \dots = e^2. \]
Finally, we evaluate:
\[ \frac{2b}{a^2} = 8. \]
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.