Consider the function:
\[ f(x) = 1 + \frac{(1 + x)}{1!} + \frac{(1 + x)^2}{2!} + \frac{(1 + x)^3}{3!} + \dots \]
This represents the series expansion for \(e^{1+x}\).
We also have:
\[ \frac{e^{1+x}}{1+x} = 1 + \frac{(1 + x)}{1!} + \frac{(1 + x)^2}{2!} + \frac{(1 + x)^3}{3!} + \dots \]
Identifying the coefficient of \(x^2\) in the right-hand side (RHS), we find:
\[ \text{Coefficient of } x^2 \text{ in RHS: } 1 + \frac{2C_2}{3} + \frac{3C_2}{4} + \dots = a. \]
For the left-hand side (LHS), we consider:
\[ e \left(1 + \frac{x^2}{2!}\right) \left(1 - x + \frac{x^2}{2!}\right) \]
This simplifies to terms where the coefficient of \(x^2\) matches the expansion on the RHS: \[ e - e + \frac{e}{2!} = a. \]
For the series for \(b\), we have:
\[ b = 1 + \frac{2}{1!} + \frac{2^2}{2!} + \frac{2^3}{3!} + \dots = e^2. \]
Finally, we evaluate:
\[ \frac{2b}{a^2} = 8. \]