Given sets:
\[ A = \{1, 3, 7, 9, 11\} \quad \text{and} \quad B = \{2, 4, 5, 7, 8, 10, 12\} \]
\[ A = \{1, 3, 7, 9, 11\} \]
\[ B = \{2, 4, 5, 7, 8, 10, 12\} \]
\[ f(1) + f(3) = 14 \]
(i) \( 2 + 12 \)
(ii) \( 4 + 10 \)
\[ 2 \times (2 \times 5 \times 4 \times 3) = 240 \]
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: