We are given the word GARDEN, which consists of the following letters: G, A, R, D, E, N. Among these letters, the vowels are A and E. To find the probability that the selected word will NOT have vowels in alphabetical order, we proceed as follows:
Step 1: Total number of arrangements.
Since there are 6 distinct letters in the word GARDEN, the total number of ways to arrange these letters is: \[ {Total arrangements} = 6! = 720 \]
Step 2: Number of favorable cases (vowels in alphabetical order).
For the vowels A and E to be in alphabetical order, the positions of A and E must be such that A appears before E. The total number of ways to arrange the 6 letters such that A appears before E is: \[ {Favorable cases} = \binom{6}{2} \cdot 4! = 15 \cdot 24 = 360 \]
Step 3: Probability calculation.
The probability that the selected word will have vowels in alphabetical order is: \[ P = \frac{360}{720} = \frac{1}{2} \] Therefore, the probability that the selected word will NOT have vowels in alphabetical order is: \[ P({Not in order}) = 1 - \frac{1}{2} = \frac{1}{2} \]
The value of current \( I \) in the electrical circuit as given below, when the potential at \( A \) is equal to the potential at \( B \), will be _____ A.
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = \frac{4}{3} \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \left( \frac{n_2}{2n_1} \right) \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is …….. cm.