We are given the word GARDEN, which consists of the following letters: G, A, R, D, E, N. Among these letters, the vowels are A and E. To find the probability that the selected word will NOT have vowels in alphabetical order, we proceed as follows:
Step 1: Total number of arrangements.
Since there are 6 distinct letters in the word GARDEN, the total number of ways to arrange these letters is: \[ {Total arrangements} = 6! = 720 \]
Step 2: Number of favorable cases (vowels in alphabetical order).
For the vowels A and E to be in alphabetical order, the positions of A and E must be such that A appears before E. The total number of ways to arrange the 6 letters such that A appears before E is: \[ {Favorable cases} = \binom{6}{2} \cdot 4! = 15 \cdot 24 = 360 \]
Step 3: Probability calculation.
The probability that the selected word will have vowels in alphabetical order is: \[ P = \frac{360}{720} = \frac{1}{2} \] Therefore, the probability that the selected word will NOT have vowels in alphabetical order is: \[ P({Not in order}) = 1 - \frac{1}{2} = \frac{1}{2} \]
Let \( S = \{p_1, p_2, \dots, p_{10}\} \) be the set of the first ten prime numbers. Let \( A = S \cup P \), where \( P \) is the set of all possible products of distinct elements of \( S \). Then the number of all ordered pairs \( (x, y) \), where \( x \in S \), \( y \in A \), and \( x \) divides \( y \), is _________.
Let \( A = \{1,2,3\} \). The number of relations on \( A \), containing \( (1,2) \) and \( (2,3) \), which are reflexive and transitive but not symmetric, is ______.
Let \( A = (1, 2, 3, \dots, 20) \). Let \( R \subseteq A \times A \) such that \( R = \{(x, y) : y = 2x - 7 \} \). Then the number of elements in \( R \) is equal to:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 