We are given the word GARDEN, which consists of the following letters: G, A, R, D, E, N. Among these letters, the vowels are A and E. To find the probability that the selected word will NOT have vowels in alphabetical order, we proceed as follows:
Step 1: Total number of arrangements.
Since there are 6 distinct letters in the word GARDEN, the total number of ways to arrange these letters is: \[ {Total arrangements} = 6! = 720 \]
Step 2: Number of favorable cases (vowels in alphabetical order).
For the vowels A and E to be in alphabetical order, the positions of A and E must be such that A appears before E. The total number of ways to arrange the 6 letters such that A appears before E is: \[ {Favorable cases} = \binom{6}{2} \cdot 4! = 15 \cdot 24 = 360 \]
Step 3: Probability calculation.
The probability that the selected word will have vowels in alphabetical order is: \[ P = \frac{360}{720} = \frac{1}{2} \] Therefore, the probability that the selected word will NOT have vowels in alphabetical order is: \[ P({Not in order}) = 1 - \frac{1}{2} = \frac{1}{2} \]
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is: