Let the sets be: \[ P = \text{Physics}, \quad M = \text{Mathematics}, \quad C = \text{Chemistry}. \] Given: \[ |P| = 75,\quad |M| = 111,\quad |C| = 40,\quad |P \cup M \cup C| = 150. \] Let \[ |P \cap C| = |M \cap C| = u,\quad |P \cap M| = 2u, \] and let \[ x = |P \cap M \cap C| \ge 1. \] Break the regions as: \[ \begin{aligned} a &= |P \cap M \text{ only}|, \\ b &= |P \cap C \text{ only}|, \\ c &= |M \cap C \text{ only}|, \\ p &= |P \text{ only}|, \\ m &= |M \text{ only}|, \\ q &= |C \text{ only}|. \end{aligned} \] Then: \[ |P \cap C| = b + x = u,\quad |M \cap C| = c + x = u,\quad |P \cap M| = a + x = 2u. \] So, \[ b + x = c + x \Rightarrow b = c, \] \[ a + x = 2u = 2(b + x) \Rightarrow a = 2b + x. \]
Step 1: Use inclusion--exclusion on the whole class. Using: \[ |P \cup M \cup C| = |P| + |M| + |C| - |P \cap M| - |P \cap C| - |M \cap C| + |P \cap M \cap C|. \] Substitute: \[ 150 = 75 + 111 + 40 - (2u) - u - u + x \Rightarrow 150 = 226 - 4u + x \Rightarrow 4u - x = 76. \quad \cdots (1) \] Since \(u = b + x\), clearly \(u \ge x\) and all variables are non-negative integers. From (1), \[ x = 4u - 76. \] \[ x \ge 1 \Rightarrow 4u - 76 \ge 1 \Rightarrow u \ge 20. \] \[ x \le u \Rightarrow 4u - 76 \le u \Rightarrow 3u \le 76 \Rightarrow u \le \frac{76}{3} \Rightarrow u \le 25. \] So \(u\) is an integer with \[ 20 \le u \le 25. \]
Step 2: Express the required quantity in terms of \(u\). We want the number of students who chose physics but not mathematics: \[ |P \cap M^c| = p + b. \] From set totals: \[ |P| = p + a + b + x = 75 \Rightarrow p = 75 - a - b - x. \] So: \[ p + b = 75 - a - b - x + b = 75 - a - x. \] But \(a = 2b + x\), and \(u = b + x\), so \(b = u - x\), hence: \[ a = 2(u - x) + x = 2u - x. \] Therefore: \[ p + b = 75 - (2u - x) - x = 75 - 2u. \] So, for any feasible \(u\), \[ |P \text{ but not } M| = 75 - 2u. \] To \emph{maximize} this, we need to \emph{minimize} \(u\), i.e., take the smallest feasible \(u\), which is \(u = 20\). Thus, \[ \max (p + b) = 75 - 2 \cdot 20 = 75 - 40 = 35. \]
Step 3: Check feasibility for \(u = 20\). For \(u = 20\): \[ x = 4u - 76 = 80 - 76 = 4, \quad b = u - x = 16, \quad c = b = 16, \quad a = 2b + x = 36. \] Now: \[ \begin{aligned} |P| &: p + a + b + x = p + 36 + 16 + 4 = p + 56 = 75 \Rightarrow p = 19, \\ |M| &: m + a + c + x = m + 36 + 16 + 4 = m + 56 = 111 \Rightarrow m = 55, \\ |C| &: q + b + c + x = q + 16 + 16 + 4 = q + 36 = 40 \Rightarrow q = 4. \end{aligned} \] All are non-negative integers, so this configuration is valid. Thus the maximum possible number of students who chose physics but not mathematics is: \[ p + b = 19 + 16 = 35. \]
Let \( A = \{1,2,3\} \). The number of relations on \( A \), containing \( (1,2) \) and \( (2,3) \), which are reflexive and transitive but not symmetric, is ______.