\[ n(R_1) = 20 + 10 + 6 + 5 + 4 + 3 + 3 + 2 + 2 + 2 + 1 + \cdots + 1 \quad \text{(10 times)} \]
\[ n(R_1) = 66 \]
\[ R_1 \cap R_2 = \{(1, 1), (2, 2), \ldots, (20, 20)\} \]
\[ n(R_1 \cap R_2) = 20 \]
\[ n(R_1 - R_2) = n(R_1) - n(R_1 \cap R_2) \]
\[ = 66 - 20 \]
\[ R_1 - R_2 = 46 \text{ pairs} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: