\[ n(R_1) = 20 + 10 + 6 + 5 + 4 + 3 + 3 + 2 + 2 + 2 + 1 + \cdots + 1 \quad \text{(10 times)} \]
\[ n(R_1) = 66 \]
\[ R_1 \cap R_2 = \{(1, 1), (2, 2), \ldots, (20, 20)\} \]
\[ n(R_1 \cap R_2) = 20 \]
\[ n(R_1 - R_2) = n(R_1) - n(R_1 \cap R_2) \]
\[ = 66 - 20 \]
\[ R_1 - R_2 = 46 \text{ pairs} \]
Let \( A = \{ 1, 2, 3, \dots, 20 \} \). Define two relations:
\(R_1 = \{(a, b) : b \text{ is divisible by } a\}\)
\(R_2 = \{(a, b) : a \text{ is an integral multiple of } b\}\)
We need the number of elements in \( R_1 - R_2 \).
Interpret the definitions:
\(R_1\): \( (a,b) \in R_1 \) if \( a \mid b \) (a divides b).
\(R_2\): \( (a,b) \in R_2 \) if \( b \mid a \) (b divides a).
So \(R_1 - R_2\) means all pairs \((a,b)\) such that \(a \mid b\) but \(b \nmid a\).
If \(a \mid b\) and \(b \mid a\), then \(a = b\).
Thus \(R_1 - R_2 = \{(a,b) \in R_1 : a \ne b\}\).
Step 1: Understand \(R_1\) and \(R_2\).
\(R_1 = \{(a,b) : a \mid b, a,b \in A\}\)
\(R_2 = \{(a,b) : b \mid a, a,b \in A\}\)
So \(R_1 \cap R_2 = \{(a,b) : a \mid b \text{ and } b \mid a\} = \{(a,a) : a \in A\}\).
Step 2: Describe \(R_1 - R_2\).
\(R_1 - R_2 = \{(a,b) \in R_1 : (a,b) \notin R_2\} = \{(a,b) : a \mid b \text{ and } a \ne b\}\).
So we need ordered pairs \((a,b)\) with \(a \ne b\) and \(a \mid b\).
Step 3: Count elements of \(R_1 - R_2\).
For each \(a \in A\), count \(b \in A\) such that \(b\) is a multiple of \(a\) and \(b \ne a\).
For \(a = 1\): Multiples of 1 in A = all 20 numbers. Exclude \(b = a = 1\) ⇒ count = 19.
For \(a = 2\): Multiples of 2 in A: 2,4,6,...,20 ⇒ 10 numbers. Exclude \(b = 2\) ⇒ count = 9.
For \(a = 3\): Multiples: 3,6,9,12,15,18 ⇒ 6 numbers. Exclude 3 ⇒ count = 5.
For \(a = 4\): Multiples: 4,8,12,16,20 ⇒ 5 numbers. Exclude 4 ⇒ count = 4.
For \(a = 5\): Multiples: 5,10,15,20 ⇒ 4 numbers. Exclude 5 ⇒ count = 3.
For \(a = 6\): Multiples: 6,12,18 ⇒ 3 numbers. Exclude 6 ⇒ count = 2.
For \(a = 7\): Multiples: 7,14 ⇒ 2 numbers. Exclude 7 ⇒ count = 1.
For \(a = 8\): Multiples: 8,16 ⇒ 2 numbers. Exclude 8 ⇒ count = 1.
For \(a = 9\): Multiples: 9,18 ⇒ 2 numbers. Exclude 9 ⇒ count = 1.
For \(a = 10\): Multiples: 10,20 ⇒ 2 numbers. Exclude 10 ⇒ count = 1.
For \(a = 11\): Multiples: 11 ⇒ 1 number. Exclude 11 ⇒ count = 0.
Similarly for \(a = 12,13,14,15,16,17,18,19,20\), multiples in A are only themselves ⇒ count = 0.
Step 4: Sum the counts.
Sum = 19 + 9 + 5 + 4 + 3 + 2 + 1 + 1 + 1 + 1 + 0 + ... + 0
Let's list clearly:
a=1: 19
a=2: 9
a=3: 5
a=4: 4
a=5: 3
a=6: 2
a=7: 1
a=8: 1
a=9: 1
a=10: 1
a=11..20: 0
Sum = 19 + 9 = 28,
28 + 5 = 33,
33 + 4 = 37,
37 + 3 = 40,
40 + 2 = 42,
42 + 1 = 43,
43 + 1 = 44,
44 + 1 = 45,
45 + 1 = 46.
Step 5: Verify with possible double-check.
We can also compute total \(R_1\) and subtract \(|R_1 \cap R_2| = 20\).
Total \(R_1\) = for each a, number of multiples of a in A =
a=1: 20, a=2: 10, a=3: 6, a=4: 5, a=5: 4, a=6: 3, a=7: 2, a=8: 2, a=9: 2, a=10: 2, a=11: 1, a=12: 1, a=13: 1, a=14: 1, a=15: 1, a=16: 1, a=17: 1, a=18: 1, a=19: 1, a=20: 1.
Sum = 20+10+6+5+4+3+2+2+2+2+1×10 = 56+10=66.
Then \(R_1 - R_2 = 66 - 20 = 46\). Matches.
Hence, the number of elements in \( R_1 - R_2 \) is 46.
If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
Let $ A = \{-2, -1, 0, 1, 2, 3\} $. Let $ R $ be a relation on $ A $ defined by $ (x, y) \in R $ if and only if $ |x| \le |y| $. Let $ m $ be the number of reflexive elements in $ R $ and $ n $ be the minimum number of elements required to be added in $ R $ to make it reflexive and symmetric relations, respectively. Then $ l + m + n $ is equal to
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 