\[f(x) = 6 + 16 \cos x \cdot \cos\left(\frac{\pi}{3} - x\right) \cdot \cos\left(\frac{\pi}{3} + x\right) \cdot \sin 3x \cdot \cos 6x
\]
\[
= 6 + 16 \cos x \cdot \left(\cos^2\left(\frac{\pi}{3}\right) - \sin^2 x\right) \sin 3x \cos 6x
\]
\[
= 6 + 16 \cos x \cdot \left(\frac{1}{4} - \sin^2 x\right) \sin 3x \cos 6x
\]
\[
= 6 + 4 \cos x \cdot \left(1 - 4 \sin^2 x\right) \sin 3x \cos 6x
\]
\[
= 6 + 4 \cos x \cdot \left(1 - 4 \sin^2 x\right) \sin 3x \cos 6x
\]
Since \(\sin 3x = 3 \sin x - 4 \sin^3 x = \sin x(3 - 4 \sin^2 x)\), then \(1-4\sin^2 x = \frac{3\sin x - \sin 3x}{\sin x} - 4 \sin^2 x \)
\[
= 6 + 4 \cos x \left(\cos 2x - \sin^2x\right) \sin 3x \cdot \cos 6x
\]
Using the identity \( \cos A \cos(A - B) \cos(A + B) = \frac{1}{4} \cos 3B \), we have:
\[
\cos x \cos\left(\frac{\pi}{3} - x\right) \cos\left(\frac{\pi}{3} + x\right) = \frac{1}{4} \cos 3x
\]
So,
\[
f(x) = 6 + 16 \cdot \frac{1}{4} \cos 3x \cdot \sin 3x \cdot \cos 6x
= 6 + 4 \cos 3x \sin 3x \cos 6x
= 6 + 2 \sin 6x \cos 6x
= 6 + \sin 12x
\]
Since \( -1 \le \sin 12x \le 1 \),
\[
5 \le f(x) \le 7
\]
So \( [\alpha, \beta] = [5, 7] \)
The distance of the point \( (5, 7) \) from the line \( 3x + 4y + 12 = 0 \) is
\[
\frac{|3(5) + 4(7) + 12|}{\sqrt{3^2 + 4^2}} = \frac{|15 + 28 + 12|}{5} = \frac{55}{5} = 11
\]