\[ \frac{{n+1}C_r}{nC_r} = \frac{55}{35} \]
\[ \frac{(n+1)!}{(r+1)!(n-r)!} \div \frac{n!}{r!(n-r)!} = \frac{11}{7} \]
\[ \frac{n+1}{r+1} = \frac{11}{7} \]
\[ 7n = 4 + 11r \]
\[ \frac{nC_r}{n-1C_{r-1}} = \frac{35}{21} \]
\[ \frac{n!}{r!(n-r)!} \div \frac{(n-1)!}{(r-1)!(n-r)!} = \frac{5}{3} \]
\[ \frac{n}{r} = \frac{5}{3} \]
\[ 3n = 5r \]
Solving for \( r = 6 \) and \( n = 10 \):
\[ 2n + 5r = 50 \]
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
In the expansion of $\left( \sqrt{5} + \frac{1}{\sqrt{5}} \right)^n$, $n \in \mathbb{N}$, if the ratio of $15^{th}$ term from the beginning to the $15^{th}$ term from the end is $\frac{1}{6}$, then the value of $^nC_3$ is:
Match List-I with List-II: List-I