Let \( 0 \le r \le n \). If \( ^{n+1}C_{r+1} : ^nC_r : ^{n-1}C_{r-1} = 55 : 35 : 21 \), then \( 2n + 5r \) is equal to:
We are given the ratio of three binomial coefficients, \(^{n+1}C_{r+1} : ^nC_r : ^{n-1}C_{r-1} = 55 : 35 : 21\), for \(0 \le r \le n\). The objective is to find the value of the expression \(2n + 5r\).
The solution uses the property of the ratio of two binomial coefficients. While the standard formula \(\frac{^nC_k}{^nC_{k-1}} = \frac{n-k+1}{k}\) is useful, in this problem, the upper and lower indices change simultaneously. Therefore, it is more direct to use the factorial definition of a binomial coefficient, \(^nC_r = \frac{n!}{r!(n-r)!}\), to derive the required ratios.
The key ratios we will use are:
Step 1: Set up two separate equations from the given compound ratio.
From the ratio \(^nC_r : ^{n-1}C_{r-1} = 35 : 21\), we can write the first equation:
\[ \frac{^nC_r}{^{n-1}C_{r-1}} = \frac{35}{21} = \frac{5}{3} \]From the ratio \(^{n+1}C_{r+1} : ^nC_r = 55 : 35\), we can write the second equation:
\[ \frac{^{n+1}C_{r+1}}{^nC_r} = \frac{55}{35} = \frac{11}{7} \]Step 2: Simplify the first ratio using the factorial definition to find a relation between \(n\) and \(r\).
\[ \frac{^nC_r}{^{n-1}C_{r-1}} = \frac{\frac{n!}{r!(n-r)!}}{\frac{(n-1)!}{(r-1)!(n-1-(r-1))!}} = \frac{\frac{n!}{r!(n-r)!}}{\frac{(n-1)!}{(r-1)!(n-r)!}} \] \[ = \frac{n!}{r!(n-r)!} \times \frac{(r-1)!(n-r)!}{(n-1)!} = \frac{n \cdot (n-1)!}{r \cdot (r-1)!} \times \frac{(r-1)!}{(n-1)!} = \frac{n}{r} \]Equating this result to the value from Step 1:
\[ \frac{n}{r} = \frac{5}{3} \implies 3n = 5r \quad \text{(Equation 1)} \]Step 3: Simplify the second ratio to find another relation between \(n\) and \(r\).
\[ \frac{^{n+1}C_{r+1}}{^nC_r} = \frac{\frac{(n+1)!}{(r+1)!(n+1-(r+1))!}}{\frac{n!}{r!(n-r)!}} = \frac{\frac{(n+1)!}{(r+1)!(n-r)!}}{\frac{n!}{r!(n-r)!}} \] \[ = \frac{(n+1)!}{(r+1)!(n-r)!} \times \frac{r!(n-r)!}{n!} = \frac{(n+1) \cdot n!}{(r+1) \cdot r!} \times \frac{r!}{n!} = \frac{n+1}{r+1} \]Equating this result to the value from Step 1:
\[ \frac{n+1}{r+1} = \frac{11}{7} \implies 7(n+1) = 11(r+1) \] \[ 7n + 7 = 11r + 11 \implies 7n - 11r = 4 \quad \text{(Equation 2)} \]Step 4: Solve the system of linear equations for \(n\) and \(r\).
From Equation 1, we have \(n = \frac{5}{3}r\). Substitute this into Equation 2:
\[ 7\left(\frac{5}{3}r\right) - 11r = 4 \] \[ \frac{35r}{3} - 11r = 4 \]Multiplying by 3 to clear the denominator:
\[ 35r - 33r = 12 \] \[ 2r = 12 \implies r = 6 \]Now substitute \(r=6\) back into the expression for \(n\):
\[ n = \frac{5}{3}(6) = 10 \]The values are \(n=10\) and \(r=6\). These satisfy the condition \(0 \le r \le n\).
Step 5: Calculate the value of the expression \(2n + 5r\).
Substitute the obtained values of \(n\) and \(r\):
\[ 2n + 5r = 2(10) + 5(6) \] \[ = 20 + 30 = 50 \]Thus, the value of \(2n + 5r\) is 50.
\[ \frac{{n+1}C_r}{nC_r} = \frac{55}{35} \]
\[ \frac{(n+1)!}{(r+1)!(n-r)!} \div \frac{n!}{r!(n-r)!} = \frac{11}{7} \]
\[ \frac{n+1}{r+1} = \frac{11}{7} \]
\[ 7n = 4 + 11r \]
\[ \frac{nC_r}{n-1C_{r-1}} = \frac{35}{21} \]
\[ \frac{n!}{r!(n-r)!} \div \frac{(n-1)!}{(r-1)!(n-r)!} = \frac{5}{3} \]
\[ \frac{n}{r} = \frac{5}{3} \]
\[ 3n = 5r \]
Solving for \( r = 6 \) and \( n = 10 \):
\[ 2n + 5r = 50 \]
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
In the expansion of \[ \left( \sqrt[3]{2} + \frac{1}{\sqrt[3]{3}} \right)^n , \, n \in \mathbb{N}, \] if the ratio of the 15th term from the beginning to the 15th term from the end is \[ \frac{1}{6}, \] then the value of \[ {}^nC_3 \] is:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
