\[ \frac{{n+1}C_r}{nC_r} = \frac{55}{35} \]
\[ \frac{(n+1)!}{(r+1)!(n-r)!} \div \frac{n!}{r!(n-r)!} = \frac{11}{7} \]
\[ \frac{n+1}{r+1} = \frac{11}{7} \]
\[ 7n = 4 + 11r \]
\[ \frac{nC_r}{n-1C_{r-1}} = \frac{35}{21} \]
\[ \frac{n!}{r!(n-r)!} \div \frac{(n-1)!}{(r-1)!(n-r)!} = \frac{5}{3} \]
\[ \frac{n}{r} = \frac{5}{3} \]
\[ 3n = 5r \]
Solving for \( r = 6 \) and \( n = 10 \):
\[ 2n + 5r = 50 \]
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).