\[ \frac{{n+1}C_r}{nC_r} = \frac{55}{35} \]
\[ \frac{(n+1)!}{(r+1)!(n-r)!} \div \frac{n!}{r!(n-r)!} = \frac{11}{7} \]
\[ \frac{n+1}{r+1} = \frac{11}{7} \]
\[ 7n = 4 + 11r \]
\[ \frac{nC_r}{n-1C_{r-1}} = \frac{35}{21} \]
\[ \frac{n!}{r!(n-r)!} \div \frac{(n-1)!}{(r-1)!(n-r)!} = \frac{5}{3} \]
\[ \frac{n}{r} = \frac{5}{3} \]
\[ 3n = 5r \]
Solving for \( r = 6 \) and \( n = 10 \):
\[ 2n + 5r = 50 \]
If
$ 2^m 3^n 5^k, \text{ where } m, n, k \in \mathbb{N}, \text{ then } m + n + k \text{ is equal to:} $
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)