Which of the following is/are correct with respect to the energy of atomic orbitals of a hydrogen atom?
(A) \( 1s<2s<2p<3d<4s \)
(B) \( 1s<2s = 2p<3s = 3p \)
(C) \( 1s<2s<2p<3s<3p \)
(D) \( 1s<2s<4s<3d \)
Choose the correct answer from the options given below:
The energy of an electron in first Bohr orbit of H-atom is $-13.6$ eV. The magnitude of energy value of electron in the first excited state of Be$^{3+}$ is _____ eV (nearest integer value)
Correct statements for an element with atomic number 9 are
A. There can be 5 electrons for which $ m_s = +\frac{1}{2} $ and 4 electrons for which $ m_s = -\frac{1}{2} $
B. There is only one electron in $ p_z $ orbital.
C. The last electron goes to orbital with $ n = 2 $ and $ l = 1 $.
D. The sum of angular nodes of all the atomic orbitals is 1.
Choose the correct answer from the options given below:
At a particular temperature T, Planck's energy density of black body radiation in terms of frequency is \(\rho_T(\nu) = 8 \times 10^{-18} \text{ J/m}^3 \text{ Hz}^{-1}\) at \(\nu = 3 \times 10^{14}\) Hz. Then Planck's energy density \(\rho_T(\lambda)\) at the corresponding wavelength (\(\lambda\)) has the value \rule{1cm}{0.15mm} \(\times 10^2 \text{ J/m}^4\). (in integer)
[Speed of light \(c = 3 \times 10^8\) m/s]
(Note: The unit for \(\rho_T(\nu)\) in the original problem was given as J/m³, which is dimensionally incorrect for a spectral density. The correct unit J/(m³·Hz) or J·s/m³ is used here for the solution.)