A right-angled triangle with hypotenuse \( h \) has two legs, which can be expressed using trigonometric functions:
\[
\text{Let } \angle OAB = \theta.
\]
\[
\text{Then, } OA = h \cos\theta, \quad OB = h \sin\theta.
\]
Step 1: Compute the area
The area \( A \) of the triangle is given by:
\[
A = \frac{1}{2} \times OA \times OB
\]
\[
= \frac{1}{2} \times h \cos\theta \times h \sin\theta
\]
\[
= \frac{1}{2} h^2 \sin\theta \cos\theta.
\]
Using the trigonometric identity:
\[
\sin\theta \cos\theta = \frac{1}{2} \sin 2\theta,
\]
we get:
\[
A = \frac{1}{4} h^2 \sin 2\theta.
\]
Step 2: Maximize the area
Since \( \sin 2\theta \) has a maximum value of 1 when \( 2\theta = 90^\circ \) or \( \theta = 45^\circ \), the maximum area is:
\[
A_{\text{max}} = \frac{1}{4} h^2 \times 1 = \frac{h^2}{4}.
\]
Step 3: Verify the correct option
The correct answer, based on the calculations, is \( \frac{h^2}{4} \), which matches option (D).