Step 1: Analyze the integral
We need to evaluate:
\[
\int \frac{x^2}{(x^2 - 1)(x^2 + 1)} \, dx
\]
Step 2: Simplify the integrand using partial fractions
Express the integrand as:
\[
\frac{x^2}{(x^2 - 1)(x^2 + 1)} = \frac{x^2}{(x-1)(x+1)(x^2 + 1)}
\]
We write partial fractions in the form:
\[
\frac{x^2}{(x-1)(x+1)(x^2 + 1)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{Cx + D}{x^2 + 1}
\]
Step 3: Multiply both sides by the denominator
\[
x^2 = A(x+1)(x^2+1) + B(x-1)(x^2+1) + (Cx + D)(x^2 - 1)
\]
Step 4: Expand and collect terms
Expand each term:
- \(A(x+1)(x^2+1) = A(x^3 + x^2 + x + 1)\)
- \(B(x-1)(x^2+1) = B(x^3 - x^2 + x - 1)\)
- \((Cx + D)(x^2 - 1) = Cx^3 - Cx + Dx^2 - D\)
Summing up:
\[
x^2 = (A + B + C) x^3 + (A - B + D) x^2 + (A + B - C) x + (A - B - D)
\]
Step 5: Equate coefficients from both sides
Comparing with \(x^2\), coefficients on left side:
- \(x^3\) term: 0
- \(x^2\) term: 1
- \(x\) term: 0
- Constant term: 0
So, set equations:
\[
\begin{cases}
A + B + C = 0 \\
A - B + D = 1 \\
A + B - C = 0 \\
A - B - D = 0
\end{cases}
\]
Step 6: Solve the system
From last two equations:
\[
A - B + D = 1, \quad A - B - D = 0
\]
Adding: \(2(A - B) = 1 \implies A - B = \frac{1}{2}\)
Subtracting: \(2D = 1 \implies D = \frac{1}{2}\)
From first and third equations:
\[
A + B + C = 0, \quad A + B - C = 0
\]
Adding: \(2(A + B) = 0 \implies A + B = 0\)
Subtracting: \(2C = 0 \implies C = 0\)
From \(A + B = 0\) and \(A - B = \frac{1}{2}\):
Adding: \(2A = \frac{1}{2} \implies A = \frac{1}{4}\)
Then \(B = -A = -\frac{1}{4}\)
Step 7: Rewrite integral using partial fractions
\[
\int \left(\frac{1/4}{x-1} - \frac{1/4}{x+1} + \frac{1/2}{x^2 + 1}\right) dx
\]
Step 8: Integrate term-by-term
\[
= \frac{1}{4} \int \frac{dx}{x-1} - \frac{1}{4} \int \frac{dx}{x+1} + \frac{1}{2} \int \frac{dx}{x^2 + 1}
\]
Integrals are:
\[
\int \frac{dx}{x-a} = \log|x - a| + c
\]
\[
\int \frac{dx}{x^2 + 1} = \tan^{-1} x + c
\]
So,
\[
= \frac{1}{4} \log|x-1| - \frac{1}{4} \log|x+1| + \frac{1}{2} \tan^{-1} x + c
\]
\[
= \frac{1}{4} \log \left|\frac{x-1}{x+1}\right| + \frac{1}{2} \tan^{-1} x + c
\]
Final answer:
\[
\boxed{\frac{1}{4} \log \left|\frac{x-1}{x+1}\right| + \frac{1}{2} \tan^{-1} x + c}
\]