\(\frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha}\)
We can use the identity \(\cos 2\theta = 2 \cos^2 \theta - 1\)
to rewrite cos 2x as: \(cos 2x = 2 cos^2 x - 1 \)
Similarly, \(cos\ 2α\) can be written as:
\(\cos 2\alpha = 2 \cos^2 \alpha - 1\)
Substituting these expressions into the integrand, we have:
\(\frac{2 \cos^2 x - 1 - 2 \cos^2 \alpha + 1}{\cos x - cos \alpha}\)
Simplifying further:
\(\frac{2 \cos^2 x - 2 \cos^2 \alpha}{\cos x - cos \alpha}\)
Factoring out a 2 from the numerator:
\(\frac{2 (\cos^2 x - cos^2 \alpha)}{cos x - cos \alpha}\)
Now, we can factor the numerator further using the difference of squares identity:
\(\frac{2[(\cos x + \cos \alpha)(\cos x - \cos \alpha)]}{\cos x - \cos \alpha}\)
Canceling out the common factor \((cos x - cos α)\) in the numerator and denominator, we have:
\(2(\cos x + \cos \alpha)\)
Now we can integrate this expression:
\(\int 2 (\cos x + \cos \alpha) \, dx\)
Integrating term by term:
\(2 \int \cos x \, dx + 2 \int \cos \alpha \, dx\)
The integral of cos x with respect to x is sin x, and the integral of a constant (cos α) with respect to x is the constant times x:
\(2 \sin x + 2 (\cos \alpha) x + c\) where c is the constant of integration.
Hence, the integral \(\int \frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha} \, dx\) is equal to \(2 \sin x + 2 (\cos \alpha) x + c\), which corresponds to option (C) \(2(\sin x + x \cos \alpha) + c\)
The value \( 9 \int_{0}^{9} \left\lfloor \frac{10x}{x+1} \right\rfloor \, dx \), where \( \left\lfloor t \right\rfloor \) denotes the greatest integer less than or equal to \( t \), is ________.
If the value of the integral
\[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{x^2 \cos x}{1 + \pi^x} + \frac{1 + \sin^2 x}{1 + e^{\sin^x 2023}} \right) dx = \frac{\pi}{4} (\pi + a) - 2, \]
then the value of \(a\) is: