
N equally spaced charges each of value \( q \) are placed on a circle of radius \( R \). The circle rotates about its axis with an angular velocity \( \omega \) as shown in the figure. A bigger Amperian loop \( B \) encloses the whole circle, whereas a smaller Amperian loop \( A \) encloses a small segment. The difference between enclosed currents, \( I_B - I_A \) for the given Amperian loops is:

Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
An organic compound (X) with molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ is not readily oxidised. On reduction it gives $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(\mathrm{Y})\right.$ which reacts with HBr to give a bromide (Z) which is converted to Grignard reagent. This Grignard reagent on reaction with (X) followed by hydrolysis give 2,3-dimethylbutan-2-ol. Compounds (X), (Y) and (Z) respectively are: