1. The position of bright fringes in Young's double-slit experiment is given by: \[ y_n = \frac{n \lambda D}{d}, \] where \(n\) is the fringe order, \(\lambda\) is the wavelength of light, \(D\) is the distance between the slits and screen, and \(d\) is the distance between the slits.
2. Substituting the given values: - \(n = 5, \, \lambda = 600 \, \text{nm} = 600 \times 10^{-9} \, \text{m}, \, y_n = 5 \, \text{cm} = 5 \times 10^{-2} \, \text{m}, \, D = 1 \, \text{m}\).
3. Rearrange for \(d\): \[ d = \frac{n \lambda D}{y_n}. \]
4. Substituting: \[ d = \frac{5 \times 600 \times 10^{-9} \times 1}{5 \times 10^{-2}} = 6 \times 10^{-6} \, \text{m} = 48 \, \mu\text{m}. \]
Thus, the distance between the slits is 48 \(\mu\text{m}\).
The fringe spacing depends on the wavelength, the slit-to-screen distance, and the slit separation. Accurate calculations require converting all quantities to SI units.
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}