Step 1: Given data
Wavelength, \( \lambda = 5000 \, \text{Å} = 5 \times 10^{-7} \, \text{m} \)
Distance between the slits, \( d = 0.3 \, \text{mm} = 3 \times 10^{-4} \, \text{m} \)
Distance between the screen and the slits, \( D = 200 \, \text{cm} = 2 \, \text{m} \).
Step 2: Formula for position of bright fringes (maxima)
The position of the \( n^{th} \) bright fringe (maxima) from the central maximum is given by:
\[
x_n = n \frac{\lambda D}{d}
\]
For the **third maxima** \( (n = 3) \):
\[
x_3 = 3 \frac{\lambda D}{d}.
\]
Step 3: Substitute the values
\[
x_3 = 3 \times \frac{5 \times 10^{-7} \times 2}{3 \times 10^{-4}}
= 3 \times \frac{1 \times 10^{-6}}{3 \times 10^{-4}}
= 3 \times 3.33 \times 10^{-3}
= 1 \times 10^{-2} \, \text{m}.
\]
Step 4: Convert to millimeters
\[
1 \times 10^{-2} \, \text{m} = 10 \, \text{mm}.
\]
Final answer
10 mm