\[ \beta = \frac{\lambda D}{d} = \frac{5 \times 10^{-7} \times 2}{3 \times 10^{-4}} = 10 \times 10^{-3} \, \text{m} \]
For 3rd maxima:
\[ y_3 = 3\beta = 10 \times 10^{-3} \, \text{m} = 10 \, \text{mm} \]
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: