The centroid $G$ lies at the intersection of the medians:
\[
x+y = 5, \quad x = 4 \Rightarrow y = 1 \Rightarrow G = (4,1)
\]
Let $A = (1,2)$, $G = \left( \frac{1+x_B+x_C}{3}, \frac{2+y_B+y_C}{3} \right) = (4,1)$.
Solving:
\[
x_B + x_C = 11, \quad y_B + y_C = 1
\]
Given $B$ lies on $x+y=5$: $x_B + y_B = 5$ and $C$ lies on $x=4$: $x_C = 4$
\[
x_B = 7, \; y_B = -2, \; y_C = 3 \Rightarrow B = (7, -2), \; C = (4, 3)
\]
Using determinant formula:
\[
\text{Area} = \frac{1}{2} |1(-2 - 3) + 7(3 - 2) + 4(2 + 2)| = \frac{1}{2} | -5 + 7 + 16 | = \frac{18}{2} = 9
\]