Given:
\[
\cos A \cos B + \sin A \sin B \sin C = 1
\]
Recall the identity:
\[
\cos A \cos B + \sin A \sin B = \cos(A - B)
\]
So,
\[
\cos A \cos B + \sin A \sin B \sin C = \cos(A - B) + \sin A \sin B (\sin C - 1)
\]
But from the equation, for the sum to be 1, \(\cos(A - B)\) must be maximized, i.e., \(\cos(A - B) = 1\), so \(A = B\).
Now, in a triangle, \(A = B\) and \(A + B + C = \pi\), so \(2A + C = \pi\), \(C = \pi - 2A\).
Now, substitute \(A = B\) and \(C = \pi - 2A\) into the original equation:
\[
\cos^2 A + \sin^2 A \sin(\pi - 2A) = 1
\]
But \(\sin(\pi - 2A) = \sin 2A\), so:
\[
\cos^2 A + \sin^2 A \cdot \sin 2A = 1
\]
But \(\cos^2 A + \sin^2 A = 1\), so for the equation to hold, \(\sin 2A = 1\), so \(2A = \dfrac{\pi}{2}\), \(A = \dfrac{\pi}{4}\).
Now,
\[
C = \pi - 2A = \pi - \dfrac{\pi}{2} = \dfrac{\pi}{2}
\]
Now, calculate \(\sin A + \sin B + \sin C\):
Since \(A = B = \dfrac{\pi}{4}\), \(C = \dfrac{\pi}{2}\):
\[
\sin A + \sin B + \sin C = 2\sin \dfrac{\pi}{4} + \sin \dfrac{\pi}{2}
\]
\[
= 2 \cdot \dfrac{1}{\sqrt{2}} + 1 = \sqrt{2} + 1
\]