Question:

In triangle \( ABC \), if \( a = 2 \), \( b = 3 \) and \( \sin A = \frac{2}{3} \), then \( \angle B = \):

Show Hint

Sine Rule Application}
Use \( \frac{a}{\sin A} = \frac{b}{\sin B} \) to solve for unknown angle
Solve algebraically and use arcsin for angle
If \( \sin B = 1 \Rightarrow B = 90^\circ \)
Updated On: May 19, 2025
  • \( \frac{\pi}{2} \)
  • \( \frac{\pi}{6} \)
  • \( \frac{\pi}{3} \)
  • \( \frac{\pi}{4} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Use sine rule: \[ \frac{a}{\sin A} = \frac{b}{\sin B} \Rightarrow \frac{2}{\frac{2}{3}} = \frac{3}{\sin B} \Rightarrow 3 = \frac{3}{\sin B} \Rightarrow \sin B = 1 \Rightarrow B = \frac{\pi}{2} \]
Was this answer helpful?
0
0