In Young's double-slit experiment, the fringe width \( \beta \) is given by the formula:
\[
\beta = \frac{\lambda D}{d}
\]
where:
- \( \lambda \) is the wavelength of the light used,
- \( D \) is the distance between the screen and the slits,
- \( d \) is the distance between the slits.
Now, when the wavelength changes, the fringe width changes accordingly. Let the initial wavelength \( \lambda_1 = 6400 \, \text{Å} = 6400 \times 10^{-10} \, \text{m} \) and the initial fringe width \( \beta_1 = 3.2 \times 10^{-4} \, \text{m} \). The new wavelength is \( \lambda_2 = 4800 \, \text{Å} = 4800 \times 10^{-10} \, \text{m} \).
We can use the ratio of the fringe widths to find the new fringe width \( \beta_2 \):
\[
\frac{\beta_2}{\beta_1} = \frac{\lambda_2}{\lambda_1}
\]
Substitute the values:
\[
\frac{\beta_2}{3.2 \times 10^{-4}} = \frac{4800 \times 10^{-10}}{6400 \times 10^{-10}}
\]
Simplifying the right-hand side:
\[
\frac{\beta_2}{3.2 \times 10^{-4}} = \frac{4800}{6400} = 0.75
\]
Now, solve for \( \beta_2 \):
\[
\beta_2 = 3.2 \times 10^{-4} \times 0.75 = 0.8 \times 10^{-4} \, \text{m}
\]
Thus, the new fringe width is \( 0.8 \times 10^{-4} \, \text{m} \).