Step 1: Check reflexivity.
A relation $R$ is reflexive if $(a,a) \in R$ for all $a$.
Here, $R = \{(1,2), (2,3), (3,4), (4,5), (5,6)\}$.
No pair is of the form $(a,a)$.
Hence, $R$ is **not reflexive**.
Step 2: Check symmetry.
If $(a,b) \in R$, then for symmetry $(b,a) \in R$.
Example: $(1,2) \in R$, but $(2,1) \notin R$.
So, $R$ is **not symmetric**.
Step 3: Check transitivity.
If $(a,b) \in R$ and $(b,c) \in R$, then $(a,c)$ should be in $R$.
Example: $(1,2) \in R$ and $(2,3) \in R$, so $(1,3)$ should be in $R$.
But $(1,3) \notin R$.
Hence, $R$ is **not transitive**.
Step 4: Conclusion.
The relation $R$ is not reflexive, not symmetric, and not transitive.
Thus, the correct answer is (C).
Let $ A = \{-2, -1, 0, 1, 2, 3\} $. Let $ R $ be a relation on $ A $ defined by $ (x, y) \in R $ if and only if $ |x| \le |y| $. Let $ m $ be the number of reflexive elements in $ R $ and $ n $ be the minimum number of elements required to be added in $ R $ to make it reflexive and symmetric relations, respectively. Then $ l + m + n $ is equal to
If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
Let A = $\{-3,-2,-1,0,1,2,3\}$. Let R be a relation on A defined by xRy if and only if $ 0 \le x^2 + 2y \le 4 $. Let $ l $ be the number of elements in R and m be the minimum number of elements required to be added in R to make it a reflexive relation. then $ l + m $ is equal to