Step 1: Check reflexivity.
A relation $R$ is reflexive if $(a,a) \in R$ for all $a$.
Here, $R = \{(1,2), (2,3), (3,4), (4,5), (5,6)\}$.
No pair is of the form $(a,a)$.
Hence, $R$ is **not reflexive**.
Step 2: Check symmetry.
If $(a,b) \in R$, then for symmetry $(b,a) \in R$.
Example: $(1,2) \in R$, but $(2,1) \notin R$.
So, $R$ is **not symmetric**.
Step 3: Check transitivity.
If $(a,b) \in R$ and $(b,c) \in R$, then $(a,c)$ should be in $R$.
Example: $(1,2) \in R$ and $(2,3) \in R$, so $(1,3)$ should be in $R$.
But $(1,3) \notin R$.
Hence, $R$ is **not transitive**.
Step 4: Conclusion.
The relation $R$ is not reflexive, not symmetric, and not transitive.
Thus, the correct answer is (C).
Let $R$ be a relation defined on the set $\{1,2,3,4\times\{1,2,3,4\}$ by \[ R=\{((a,b),(c,d)) : 2a+3b=3c+4d\} \] Then the number of elements in $R$ is
Let \(M = \{1, 2, 3, ....., 16\}\), if a relation R defined on set M such that R = \((x, y) : 4y = 5x – 3, x, y (\in) M\). How many elements should be added to R to make it symmetric.