The energy of the incident photon is given by:
\[
E_{\text{photon}} = \frac{hc}{\lambda}.
\]
The total energy of the photon is used to overcome the work function \( \phi \) of the metal and to provide the kinetic energy to the ejected electrons. Thus:
\[
E_{\text{photon}} = \phi + K.E.
\]
Substitute the values:
\[
\frac{hc}{\lambda} = 2.14 \, \text{eV} + 2 \, \text{eV} = 4.14 \, \text{eV}.
\]
Using \( hc = 1242 \, \text{eV} \cdot \text{nm} \), we get:
\[
\frac{1242}{\lambda} = 4.14 \quad \Rightarrow \quad \lambda = \frac{1242}{4.14} \approx 300 \, \text{nm}.
\]