Step 1: Use Einstein’s photoelectric equation.
\[ K_{\max} = h\nu - \phi \] where \( K_{\max} \) = maximum kinetic energy of the emitted electrons, \( \nu \) = frequency of incident light, \( \phi \) = work function of the metal.
Step 2: For wavelength \( \lambda \):
\[ K_1 = h\nu_1 - \phi = 2\,\text{eV} \] and given \( \phi = 1\,\text{eV} \), \[ h\nu_1 = K_1 + \phi = 2 + 1 = 3\,\text{eV}. \]
Step 3: For wavelength \( \frac{\lambda}{2} \):
Frequency doubles, since \( \nu \propto \frac{1}{\lambda} \): \[ \nu_2 = 2\nu_1. \] Hence the new photon energy: \[ h\nu_2 = 2h\nu_1 = 2 \times 3 = 6\,\text{eV}. \]
Step 4: Compute new kinetic energy.
\[ K_2 = h\nu_2 - \phi = 6 - 1 = 5\,\text{eV}. \]
\[ \boxed{K_{\max} = 5\,\text{eV}} \]
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.