Step 1: Use Einstein’s photoelectric equation.
\[ K_{\max} = h\nu - \phi \] where \( K_{\max} \) = maximum kinetic energy of the emitted electrons, \( \nu \) = frequency of incident light, \( \phi \) = work function of the metal.
Step 2: For wavelength \( \lambda \):
\[ K_1 = h\nu_1 - \phi = 2\,\text{eV} \] and given \( \phi = 1\,\text{eV} \), \[ h\nu_1 = K_1 + \phi = 2 + 1 = 3\,\text{eV}. \]
Step 3: For wavelength \( \frac{\lambda}{2} \):
Frequency doubles, since \( \nu \propto \frac{1}{\lambda} \): \[ \nu_2 = 2\nu_1. \] Hence the new photon energy: \[ h\nu_2 = 2h\nu_1 = 2 \times 3 = 6\,\text{eV}. \]
Step 4: Compute new kinetic energy.
\[ K_2 = h\nu_2 - \phi = 6 - 1 = 5\,\text{eV}. \]
\[ \boxed{K_{\max} = 5\,\text{eV}} \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 