Step 1: Use Einstein’s photoelectric equation.
\[ K_{\max} = h\nu - \phi \] where \( K_{\max} \) = maximum kinetic energy of the emitted electrons, \( \nu \) = frequency of incident light, \( \phi \) = work function of the metal.
Step 2: For wavelength \( \lambda \):
\[ K_1 = h\nu_1 - \phi = 2\,\text{eV} \] and given \( \phi = 1\,\text{eV} \), \[ h\nu_1 = K_1 + \phi = 2 + 1 = 3\,\text{eV}. \]
Step 3: For wavelength \( \frac{\lambda}{2} \):
Frequency doubles, since \( \nu \propto \frac{1}{\lambda} \): \[ \nu_2 = 2\nu_1. \] Hence the new photon energy: \[ h\nu_2 = 2h\nu_1 = 2 \times 3 = 6\,\text{eV}. \]
Step 4: Compute new kinetic energy.
\[ K_2 = h\nu_2 - \phi = 6 - 1 = 5\,\text{eV}. \]
\[ \boxed{K_{\max} = 5\,\text{eV}} \]
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.