In the matrix A= \(\begin{bmatrix} 2 & 5 & 19&-7 \\ 35 & -2 & \frac{5}{2}&12 \\ \sqrt3 & 1 & -5&17 \end{bmatrix}\),write:
I. The order of the matrix
II. The number of elements
III. Write the elements a13, a21, a33, a24, a23
(i) In the given matrix, the number of rows is 3 and the number of columns is 4.
Therefore, the order of the matrix is 3 × 4.
(ii) Since the order of the matrix is 3 × 4, there are 3 × 4 = 12 elements in it.
(iii) \(a_{13}=19, a_{21}=35,a_{33}=-5,a_{24}=12,a_{23}=\frac{5}{2}\)
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.