Given:
\[ V_s = 8V, \quad V_z = 5V, \quad R_L = 1k\Omega \]
\[ P_d = 10 \, \text{mW}, \quad V_z = 5V \implies I_z = \frac{P_d}{V_z} = \frac{10 \times 10^{-3}}{5} = 2 \, \text{mA} \]
\[ I_L = \frac{V_z}{R_L} = \frac{5V}{1k\Omega} = 5 \, \text{mA} \]
\[ I_{z_{max}} = 2 \, \text{mA} \]
\[ I_s = I_L + I_z = 5 \, \text{mA} + 2 \, \text{mA} = 7 \, \text{mA} \]
\[ R_s = \frac{V_s - V_z}{I_s} = \frac{8V - 5V}{7 \, \text{mA}} = \frac{3}{7} k\Omega \]
For the minimum current through the Zener diode:
\[ I_{z_{min}} = 0 \, \text{mA} \quad \text{(to ensure Zener regulation)} \]
Total current through the circuit:
\[ I_{s_{min}} = I_L = 5 \, \text{mA} \]
The corresponding series resistance \(R_s\) for minimum current is given by:
\[ R_{s_{min}} = \frac{V_s - V_z}{I_{s_{min}}} = \frac{8V - 5V}{5 \, \text{mA}} = \frac{3}{5} k\Omega \]
Thus, the value of the series resistance \(R_s\) must satisfy:
\[ \frac{3}{7} k\Omega < R_s < \frac{3}{5} k\Omega \]
Therefore, the suitable range for \(R_s\) is between \(\frac{3}{7} k\Omega\) and \(\frac{3}{5} k\Omega\).
Which of the following circuits represents a forward biased diode?
In the following circuit, the reading of the ammeter will be: (Take Zener breakdown voltage = 4 V)
The output voltage in the following circuit is (Consider ideal diode case):
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: