Given:
\[ V_s = 8V, \quad V_z = 5V, \quad R_L = 1k\Omega \]
\[ P_d = 10 \, \text{mW}, \quad V_z = 5V \implies I_z = \frac{P_d}{V_z} = \frac{10 \times 10^{-3}}{5} = 2 \, \text{mA} \]
\[ I_L = \frac{V_z}{R_L} = \frac{5V}{1k\Omega} = 5 \, \text{mA} \]
\[ I_{z_{max}} = 2 \, \text{mA} \]
\[ I_s = I_L + I_z = 5 \, \text{mA} + 2 \, \text{mA} = 7 \, \text{mA} \]
\[ R_s = \frac{V_s - V_z}{I_s} = \frac{8V - 5V}{7 \, \text{mA}} = \frac{3}{7} k\Omega \]
For the minimum current through the Zener diode:
\[ I_{z_{min}} = 0 \, \text{mA} \quad \text{(to ensure Zener regulation)} \]
Total current through the circuit:
\[ I_{s_{min}} = I_L = 5 \, \text{mA} \]
The corresponding series resistance \(R_s\) for minimum current is given by:
\[ R_{s_{min}} = \frac{V_s - V_z}{I_{s_{min}}} = \frac{8V - 5V}{5 \, \text{mA}} = \frac{3}{5} k\Omega \]
Thus, the value of the series resistance \(R_s\) must satisfy:
\[ \frac{3}{7} k\Omega < R_s < \frac{3}{5} k\Omega \]
Therefore, the suitable range for \(R_s\) is between \(\frac{3}{7} k\Omega\) and \(\frac{3}{5} k\Omega\).
Which of the following circuits represents a forward biased diode?
In the following circuit, the reading of the ammeter will be: (Take Zener breakdown voltage = 4 V)
The output voltage in the following circuit is (Consider ideal diode case):
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).